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Computer Animation of the Walking Mechanics of Australopithecus sediba

ABSTRACT
Bipedal locomotion is one of the defining features of hominins—the lineage consisting of human ancestors and 
extinct relatives. Fossilized bones of the foot, leg, and pelvis, together with preserved footprints, demonstrate 
that the early hominin genus Australopithecus was an obligate biped. However, recent fossil discoveries indicate 
that there was bipedal diversity in Australopithecus, with different species walking in biomechanically distinct 
ways. One such hominin, Australopithecus sediba—a nearly 2 million-year-old species discovered in South Africa 
in 2008—possessed anatomies of the foot, ankle, knee, and pelvis that are consistent with a hyperpronatory gait. 
Though this hypothesis was published in 2013, it has remained a difficult bipedal motion to visualize and com-
municate to colleagues and the general public alike. Using a 3D surface scan of the partial skeleton of Au. sediba 
as a template and rigging the model in Autodesk Maya, a digital animation of the proposed walking mechanics in 
this ancient human relative is presented here. It is partially from this visualized form of walking that predictions 
can be generated to continue to test the hyperpronation hypothesis. 

This special issue is guest-edited by Jeremy M. DeSilva (Department of Anthropology, Dartmouth College) and 
Scott A. Williams (Department of Anthropology, New York University). This is article #9 of 9.

INTRODUCTION

It is well established that upright walking evolved in the 
human lineage by at least 4 million years ago (Leakey 

et al. 1995), and it may go back even more distant in time 
(i.e., Brunet et al. 2002). The 3.66 million-year-old Laetoli 
footprints were made by an upright walking hominin 
(Day et al. 1980), presumably members of the same spe-
cies—Australopithecus afarensis—best represented by the 
famous “Lucy” skeleton. These footprints, the Lucy par-
tial skeleton, and dozens of isolated fossils from the lower 
limb of Australopithecus demonstrate that early members of 
this genus locomoted in a fully bipedal manner (Lovejoy 
1988). While debates focused on whether Australopithecus 
also climbed trees and whether their mechanics of bipedal-
ism were more (e.g., Latimer and Lovejoy 1990) or less (e.g., 
Stern and Susman 1983) human-like, few scholars sug-
gested anything but a single form of bipedalism at any one 
time during human evolution (but see Robinson 1972 and 
Harcourt-Smith and Aiello 2004 who accurately predicted 
differences in bipedal kinematics in different australopith 
species). This linear narrative of human bipedal evolution 
changed quite dramatically with the publication of two re-

cent fossil discoveries.  
First, a 3.4 million-year-old partial foot from Burtele, 

Ethiopia possessed a grasping big-toe (Haile-Selassie et al. 
2012). This fossil revealed that living contemporaneously 
with Lucy and her kind was yet another form of early hom-
inin, walking with different bipedal mechanics. However, 
the precise nature of walking in this creature, and even its 
taxonomic identity (Haile-Selassie et al. 2015) remains un-
known until more of its postcranial remains are discovered 
in association with attributable craniodental fossils. Ad-
ditionally, as detailed in this volume, partial skeletons of 
a 1.977 Ma species of hominin called Australopithecus sed-
iba (Berger et al. 2010) have been recovered from Malapa, 
South Africa. The two partial skeletons represent a juvenile 
male (known as MH1 or “Karabo”) and an adult female 
(MH2). The fossilized remains of this species include the 
craniodental anatomy (Berger et al. 2010; Irish et al. 2013; de 
Ruiter et al. 2018), arm (Churchill et al. 2013; Churchill et al. 
2018b), hand (Kivell et al. 2011; Kivell et al. 2018), torso and 
back (Williams et al. 2013; Williams et al. 2018), pelvis (Kibii 
et al. 2011; Churchill et al. 2018a), hip and leg (DeSilva et 
al. 2013; DeSilva et al. 2018), and parts of the foot (Zipfel et 
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in modern apes (Vereecke et al. 2003). However, unlike in 
modern apes, which achieve foot inversion at both the sub-
talar and talocrural joints, inversion of the foot would oc-
cur solely at the mobile subtalar joint in Au. sediba, given 
the human-like talocrural joint in this hominin (Zipfel et 
al. 2011). Landing on the edge of an inverted foot (at the 
subtalar joint, but not talocrural joint) would introduce a 
shearing force through the medial ankle of Au. sediba, and 
the thick medial malleolus was proposed as an adaptive re-
sponse to this form of walking. Both the MH2 distal tibia 
and an isolated tibia from another adult MH4 (U.W. 88-21) 
possess unusually thick malleoli (DeSilva et al 2013; Zipfel 
et al 2011). Humans today who land on the outside edge 
of their foot incur a pronatory torque in which the foot is 
driven by ground reaction forces into rapid pronation (Holt 
and Hamil 1995). Stance phase pronation unlocks the liga-
ments of the midfoot and renders the foot highly mobile—a 
condition which is unusual and occasionally pathological 
in modern humans, but is present in Au. sediba as evidenced 
by the convex base of its fourth metatarsal (DeSilva et al. 
2015), the only such convex Mt4 base found in the hominin 
fossil record (DeSilva et al. 2013). 

Furthermore, modern human hyperpronators are at a 
greater risk for patellar subluxation. Elevated medial rota-
tion of the tibia and femur in a hyperpronator increases the 
Q-ankle and thus the lateral pull of the quadriceps mus-
cle, which increases the likelihood of patellar dislocation 
(Rothbart and Estabrook 1998). Au. sediba appears to have 
evolved an anatomical solution to the very problem hu-
mans face today if they hyperpronate in possessing an ex-
ceptionally high lateral lip. However, walking in this man-
ner is not without cost. Extreme rotation of the lower limb 
would strain any muscle crossing both the hip and knee 
joint and may have resulted in the osteophytes present at 
the origin of M. rectus femoris on the anterior inferior iliac 
spine of the pelvis and the insertion for M. biceps femoris on 
the proximal end of the fibula (DeSilva et al. 2013). 

This hypothesis has not been without criticism, which 
most notably asked why such an ungainly walk would 
evolve at all (Kimbel 2013). We propose that this form of 
walking was, in part, a compensatory gait in a hominin 
well-adapted for a dual life on the ground and in the trees. 
There is evidence from the upper limb (Churchill et al 2013; 
Churchill et al. 2018b; Rein et al. 2017), cervical vertebrae 
(Meyer et al. 2018), and from its diet (Henry et al. 2012) that 
Au. sediba was comfortable in an arboreal environment and 
it is likely that adaptations for surviving in an arboreal en-
vironment would impact the mechanics of terrestrial gait. 
In other words, there was a trade-off and the gait of Au. 
sediba was seemingly unusual precisely because it was such 
an arboreally-adapted hominin, perhaps more so than any 
other species of Australopithecus yet discovered. 

The Au. sediba skeletons are not yet complete and there 
are key anatomies of the foot skeleton that have not yet been 
discovered (i.e., the hallux). The hyperpronation hypoth-
esis is based on the anatomies currently known from the 
Au. sediba skeletons (particularly MH2) and will be reevalu-
ated as additional material is recovered. While this hypoth-

al. 2011; DeSilva et al. 2018). Preserved regions of the lower 
back, hip, knee, ankle, and foot are particularly informa-
tive for reconstructing gait mechanics in an ancestral hom-
inin. Interestingly, in many ways these key anatomies for 
understanding bipedal gait are morphologically different 
from these same regions in other fossil hominins, including 
Au. africanus (DeSilva et al. 2013). Since the shapes of bones 
reveal their function, the Au. sediba skeletons provide some 
of the best evidence yet discovered that different species of 
Australopithecus walked in biomechanically different ways. 
Additional discoveries made in the last decade have fur-
ther revealed that bipedal mechanics likely differed across 
species of Homo as well (Harcourt-Smith et al. 2016; Jungers 
et al. 2009; Marchi et al. 2016; Ward et al. 2015). 

Australopithecus sediba possessed a gracile, ape-like 
calcaneus; strikingly more primitive than the large-robust 
heel found in Au. afarensis (Zipfel et al. 2011). The gracility 
of the calcaneus is in part a function of a more ape-like, dor-
sally placed lateral plantar process (Boyle et al. 2018; Zipfel 
et al. 2011), which in modern humans and in Au. afarensis 
is more plantarly positioned, increasing the volume of the 
heel. Unlike the foot of other known fossil hominins, the 
Au. sediba midfoot was mobile and could produce a “mid-
tarsal break” (DeSilva et al. 2013). This midfoot mobility 
is present in all non-human primates (DeSilva 2010), and 
present in a small, but not insignificant, fraction of modern 
humans (DeSilva and Gill 2013; DeSilva et al. 2015). Addi-
tionally, while the ankle was human-like in many respects, 
Au. sediba had an enlarged medial malleolus, and a highly 
mobile subtalar joint, anatomies found in the inverted foot 
of climbing apes (Zipfel et al. 2011). The foot of Au. sediba 
appeared primitive in many respects (likely a function of 
frequent and proficient tree climbing in this hominin), but 
there were anatomies that were also quite derived. The dis-
tal femur possessed a human-like bicondylar angle, which 
positions the knees directly over the feet in a striding biped-
al animal. Additionally, the distal femur possessed a high 
lateral lip, which acts as a barrier to keep the patella from 
being pulled laterally out of the patellar groove in mod-
ern humans. However, the Au. sediba femoral lateral lip is 
considerably higher than that typically found in humans 
today (DeSilva et al. 2013). Additionally, the lower back of 
Au. sediba was highly lordotic (Williams et al. 2013). Finally, 
there are two osteophytic growths at the pelvic origin of M. 
rectus femoris, and the proximal fibular insertion for M. bi-
ceps femoris, that may be indicative of increased rotation of 
the lower limb in Au. sediba generally, and MH2 specifically 
(DeSilva et al. 2013), though a relationship between enthe-
sis morphology and muscular use has been questioned 
(e.g., Zumwalt, 2006). 

We deduced that this combination of unusual anato-
mies was consistent with a hyperpronatory gait in Au. 
sediba (DeSilva et al. 2013). Because it possessed a gracile 
calcaneus, it was hypothesized that heel-striking in a hu-
man-like manner would introduce damagingly high stress 
on the calcaneus of Au. sediba. Instead, it was proposed 
that Au. sediba’s foot landed on the outside edge of an in-
verted foot, similar to foot touchdown observed at times 
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was created with a 2mm resolution, which was exported 
as an STL file. In regions of anatomical interest for bipedal 
gait (hip, knee, ankle, and foot), isolated casts, and in some 
cases original fossil material, were scanned at a higher 
resolution with a Creaform Go!Scan 20 scanner from AM-
ETEK Ultra Precision Technologies. Once again, these files 
were cleaned, merged, and a mesh created with a 0.2mm 
resolution, and exported as STL files. Meshmixer was used 
to convert the files from STL to OBJ so that they could be 
opened and manipulated in Autodesk Maya 2016. Scans 
were aligned to a center axis. 

In Autodesk Maya 2016, a new mesh was created for 
each bone. The mesh generated from the scanner is made 
up of triangles and often contains overlaps and irregulari-
ties that can complicate rendering and animation in later 
steps. This new mesh was made of quads and four-way in-
tersections, with a few triangles and five-way intersections 
when necessary. Edges were defined by following the con-
tours of the bone. 

The surface scan was made a Live Surface. For bones 
that were well-defined in the scan, Quad Draw was used 
to draw a new mesh over the scan. The vertices of the new 
mesh were snapped to the Live Surface. For bones that 
were poorly defined in the surface scan, a modern human 
skeleton model or a rough, approximate shape from a ba-
sic polygon was used. The model was positioned, scaled, 
and sculpted to approximate the form and position of the 
desired bone in the scan. In the vertex mode, all vertices of 
the new bone were selected. The scan was made a Live Sur-
face, and the vertices were scaled to match the mesh and 
adjusted as necessary.  

Missing areas or detail were added first by increasing 

esis has been criticized by some (Kimbel 2013), others have 
found additional support for this proposed mechanism of 
gait (Prang 2016). However, whether it has been accepted 
or not, the hyperpronation hypothesis appears to be con-
sistently misunderstood. Multiple news reports described 
this as a “pigeon-toed” gait (Choi 2013; Innes 2013; Viegas 
2013) even though the hypothesis makes no mention of the 
orientation of the foot relative to the tibial shaft. Hyperpro-
nators can walk with a toe-in, or toe-out position of the foot 
relative to the tibia (unpublished data). Some have suggest-
ed this gait involved less medial weight transfer typical of 
other australopiths (Fleagle and Lieberman 2016), though 
the hypothesis actually calls for increased medial weight 
transfer. Others suggested that Au. sediba “swayed side-
to-side” (Jurmain et al. 2017), which is unlikely given the 
vertical orientation of the iliac blades and human-like hip 
abductor mechanism (Kibii et al. 2013), though we remain 
open to this possibility (Ruff and Higgins 2013). One reason 
for these misunderstandings is the fact that it is difficult 
to describe gait in words and instead walking mechanics 
are more effectively visualized. Humans are fine-tuned to 
subtle gait variation and can use those cues to identify indi-
viduals (Cutting and Kozlowski 1977), their sex classifica-
tion (Lee and Grimson 2002), and can even infer emotional 
states from gait kinematics (Roether et al. 2009). It is there-
fore critical for effectively communicating the hyperpro-
nation hypothesis to colleagues and to the general public 
alike that these gait mechanics be digitally rendered and 
easily visualized. 

This is not the first attempt to digitally reconstruct gait 
in a fossil hominin. A 3D digital animation of the A.L. 288-1 
“Lucy” skeleton has been published (Nagano et al. 2005) 
and compared with a model of the Nariokotome Homo erec-
tus skeleton (KNM-WT 15000) to infer locomotor kinemat-
ics in Australopithecus and early fossil Homo (Wang et al. 
2004). Our intent in developing this model of walking in 
Au. sediba is to: A) more effectively communicate to the sci-
entific community and the general public how the hyper-
pronation hypothesis predicts Au. sediba to have walked; 
B) provide a 3-dimensional model available to research-
ers interested in using inverse dynamics to calculate joint 
torques on Au. sediba during walking to continue to make 
predictions about its skeletal adaptations for this mode of 
walking; and C) provide a 3-dimensional model for those 
interested in applying forward dynamic modeling to fur-
ther test, refine, or if the evidence calls for it, refute the hy-
perpronation hypothesis; and D) provide a methodological 
template by which future fossil hominin skeletons can be 
animated either to stimulate scientific inquiry and/or the 
general public’s interest in our science.

MATERIALS AND METHODS
A 3D surface scan of the composite Au. sediba skeleton was 
produced from casts of the original fossils, articulated into 
a standing skeleton by P. Schmid (Figure 1). The scan was 
made with a Creaform Go!Scan 50 from AMETEK Ultra 
Precision Technologies. Using the Creaform software (VX 
Elements), the scans were cleaned, merged, and a mesh 

Figure 1. Reconstruction of Australopithecus sediba in lateral 
view. The nearly 2 million-year-old partial skeleton from Malapa, 
South Africa has been articulated, scanned, and is presented in 
digital form in lateral view. Notice the lordotic spine and the ex-
tended hips and legs. 
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the heel first lifted off the ground. As the heel continued to 
lift, flexion proceeded distally to the ball of the foot. 

A batch render of one cycle of the animation from a 
camera position from the front, side, and three-quarter 
views was created. Each image sequence was opened in 
Photoshop as a video layer and exported. 

RESULTS
The hypothesized mechanics of walking in Australopithecus 
sediba are visualized by rigging and animating a 3D model 
based on a surface scan of the partial skeleton in Autodeak 
Maya. The model was created using the 3D surface scan as 
a template. The rig and animation are adapted from a stan-
dard human rig and walk cycle to reflect hypothesized dif-
ferences in the gait of Au. sediba (see Holliday et al. 2018). In 
oblique view (Figure 2; Video Figure 1), one may notice the 
relatively long arms and short legs of Au. sediba, but walk-
ing mechanics likely appear quite modern human-like. As 
in modern human walking, there was likely full extension 
of the knee and hip in Australopithecus and forward motion 
of the leg would be counter torqued by contralateral for-
ward motion of the arm. 

In frontal view (Figure 3; Video Figure 2), notice that 
contact of the foot with the substrate occurs along the lat-
eral edge of a flat and inverted foot. Because the tibia is 
orthogonal to the ankle joint in Au. sediba, as in all other 
hominin tibiae, inversion is occurring at the highly mobile 
subtalar joint, rather than the talocrural joint. As the foot 

the resolution by inserting edge loops into a specific area 
or by using Smooth Mesh on the entire bone. Vertices of 
the region of the model were selected and either scaled or 
moved to match the Live Surface scan. In cases where a 
higher resolution scan existed for a region of anatomical 
interest (e.g., ankle, knee), the OBJ file of that element was 
imported, positioned, and scaled to the appropriate loca-
tion in the full scan. The new template scan was made a 
Live Surface and relevant vertices in the model were se-
lected and scaled to match the Live Surface. In cases where 
a higher-resolution scan did not exist, Fill Hole and Multi-
Cut tools were used to create and define the mesh in the 
missing region. Vertices were manually moved to approxi-
mate the correct geometry. 

The new mesh was created for one side of the body and 
then reflected across the central axis using Mirror Geom-
etry. Vertices were combined for bones on the central axis. 
Before rigging, the surface scan was hidden and the bones 
of the clean mesh were positioned to match the T-position 
of the rig.  

The foot was rigged first. Joints of the rig were matched 
to the bones of the model, allowing the model to bend at 
that joint location. To keep the bones of the toes from pull-
ing apart as the foot bent, the ball and toe joints of the foot 
were positioned between the first and second toes of the 
mesh. A midfoot joint was located at the lateral tarsometa-
tarsal joint (between the cuboid and the lateral metatarsals) 
and medially between the second metatarsal and the inter-
mediate cuneiform such that the foot rig had heel, midfoot, 
ball, and toe joints. Inverse Kinematic (IK) handles were 
created successively at the hip, heel, midfoot, ball, and toe 
joints. Controls were created for the foot, heel, midfoot and 
toe; the parent function was used to link toe and midfoot 
controls to the foot control; the heel to midfoot control; heel 
IK and leg IK to heel control; midfoot IK to midfoot control; 
and toe IK to toe control. Standard rigging best practices 
were used to control the rest of the body. 

The model was bound to the completed rig. The bones 
(aside from the spine) were skinned such that they were 
influenced by one joint only and did not bend. The spine 
was skinned with multiple influences and used Paint Skin 
Weights to adjust the influence of each spinal joint on 
portions of the spine. Skin weights were tested by bend-
ing each joint to check the model’s motion. The outer foot 
bones were skinned with influences from multiple joints 
to prevent them from pulling too far away from adjacent 
bones as the foot bent.

The model was animated using a standard human walk 
cycle at 32 frames/second with the following modifications. 
The foot strike did not start with heel contact, but rather 
with simultaneous contact of the lateral edge of an inverted 
foot. The foot then rolled medially (pronated) such that the 
whole foot contacted the ground. The knee medially rotat-
ed following the foot stride. The maximum rotation of the 
hip in the x-axis was delayed so that the forward hip con-
tinued to rotate forward past the extension position follow-
ing the inward motion of the foot and knee. The back foot 
was animated by bending the foot at the midfoot region as 

Figure 2. Australopithecus sediba in oblique view. Still frame 
from Video Figure 1. Notice the relatively long arms, and short 
legs (see Holliday et al. 2018) and the fully extended knee and 
hip. The left foot is contacting the ground in a position of slight 
inversion. Notice the contralateral forward motion of the right 
arm at this moment in the gait cycle. 
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sessing a relatively short stride length. 

DISCUSSION
This paper presents a 3-dimensional animation of the pro-
posed mechanics of bipedal locomotion in a nearly 2-mil-
lion-year-old fossil hominin species, Australopithecus sediba. 
A 3D model appropriate for animation was constructed 
in Autodesk Maya using a surface scan of the composite 
Au. sediba skeleton as a template. For portions of the skel-
eton missing in the scan, the model was approximated or 
filled in using other 3D surface scans of individual bones. 
An additional joint was inserted into a standard human rig 
at the midfoot, and the inverse kinematics controls on the 
foot were adapted to accommodate a second “break.” The 
animation was modified from a typical human walk cycle 
to illustrate the hypothesized hyperpronation gait of Au. 
sediba. The most important features include the foot strike 
on the outer edge of the inverted foot instead of directly on 
the heel, the inward rotation of the knee and hip follow-
ing contact with the ground, and the midtarsal break of the 
midfoot during push-off (Video Figure 4).

Although the animation is based on a surface scan of an 
articulated Au. sediba skeleton, modifications to the model 
were made. The articulated composite skeleton possesses 
an anteriorly tilted torso. Lumbar lordosis was increased to 
bring the torso back over the hip joints, consistent with the 
anatomy of the MH2 skeleton (Williams et al. 2013). Some 
portions of the model were mirrored from the right to left 
side and may not possess all the asymmetries present in the 
articulated skeleton. The joints of the articulated composite 
skeleton are sealed together, and so the joints of the model 

contacts the substrate, ground reaction forces drive the 
midfoot into excessive and rapid pronation (hyperprona-
tion) visualized as extreme medial weight transfer. Because 
of the closed kinetic chain of the leg, pronation of the foot 
results in medial rotation of the tibia and femur as well. 
This motion effectively increases the Q-angle of the femur 
and pulls the knees toward the midline. In frontal view, 
medial rotation of the pelvis can be visualized as well—a 
motion that would effectively increase the stride length in a 
short-legged hominin (Rak 1991). 

In lateral view (Figure 4; Video Figure 3), notice the 
high degree of lumbar lordosis, and full extension of the 
hip and knee joints during the gait cycle. Furthermore, 
the inverse pendular mechanics of human-like walking, in 
which there is an exchange of potential and kinetic energy 
as the center of mass rises and falls, is evident by watching 
the sinusoidal motion of the head. In this view, three im-
portant and unique aspects of gait in Au. sediba are visible. 
First, the foot of this hominin is flat (Prang 2015) and con-
tacts the ground without a proper heel-strike, but with the 
entire lateral foot simultaneously hitting the ground. Sec-
ond, as the heel lifts off the substrate, there is dorsiflexion 
at the lateral tarsometatarsal joint—a so-called “midtarsal 
break.” This motion is unusual in humans, though it can be 
found in modern humans that possess flat feet and a hyper-
pronatory gait (DeSilva et al. 2015). Finally, because it has 
been shown that midfoot flexibility compromises the push-
off mechanism (Bates et al. 2013; DeSilva et al. 2015), the 
foot does not drive off the ground and instead lifts off the 
ground. It is likely that these mechanics of walking would 
reduce stride length and thus Au. sediba is modeled as pos-

Video Figure 1. Computer animation of Australopithecus sediba walking in oblique view. In this view, notice the human-like walk, 
with and extended knee, extended hip, and little mediolateral sway during gait. 
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Figure 3. Australopithecus sediba gait in frontal view. Still frames from Video Figure 2. A) The right leg is in the final moments of 
swing phase. Notice that the right foot is in an inverted position—a motion occurring at the subtalar joint, but not the talocrural. B) 
At “heel-strike,” the foot is hypothesized to contact much of the lateral edge of the forefoot, in addition to the lateral edge of the heel. C) 
Foot flat is achieved rapidly as ground reaction forces drive the foot into excessive pronation (hyperpronation). This foot motion has 
an upstream effect, causing medial rotation of the tibia and the femur. Notice in frame “C” that the Q-angle of the femur has increased 
considerably from frames “A” and “B.”

Video Figure 2. Computer animation of Australopithecus sediba walking in frontal view. Notice the contact of the foot along the 
lateral edge and the rapid pronation (medial weight transfer). Notice also the medial rotation of the tibia and femur during the stance 
phase of gait, and the increased medial rotation of the pelvis during the swing phase. 
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appear narrower than the original.
Additionally, it must be recognized that although the 

Au. sediba female skeleton (MH2) is one of the more com-
plete partial skeletons in the hominin fossil record, it is still 
missing a large portion of its skeleton. Some of the skel-

are either constructed from additional scans of individual 
bones or approximated. The vertices of the new model fall 
on the planes defined by the 3D surface scan whenever pos-
sible, but because of the reduction in number of vertices 
in the model and digital smoothing, the model bones may 

Figure 4. Australopithecus sediba gait in lateral view. Still frames from Video Figure 3. A) The right leg is in the final moments of 
swing phase; the relatively flat foot is in slight inversion. B) Right foot flat (after initial contact, the foot has fully pronated. C) Initial 
heel lift reveals a midtarsal break, in which dorsiflexion at the tarsometatarsal joint precedes dorsiflexion at the metatarsophalangeal 
joint. D) Toe-off is weak—a pronated, hypermobile foot is not able to push-off the ground as a rigid foot does (see Bates et al. 2013; 
DeSilva et al. 2015), resulting in shorter, less efficient strides. 

Video Figure 3. Computer animation of Australopithecus sediba walking in lateral view. Notice the flat foot and the midtarsal break 
occurring between the cuboid and the lateral metatarsals. In this view, the lordodic spine and fully extended hip and knee can also be 
visualized. 
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3-dimensional model is available to researchers interested 
in using inverse dynamics to calculate joint torques pro-
duced by Au. sediba during walking to continue to make 
predictions about its skeletal anatomy and adaptations for 
this mode of walking. For example, preliminary work on 
this skeleton from our research team using OpenSIM sug-
gests a high moment for the adductor muscles and M. piri-
formis in Au. sediba. Additionally, this 3-dimensional model 
is now available for those interested in applying forward 
dynamic modeling (as others have done with fossil homi-
nins [Nagano et al. 2005]) to further test and refine the hy-
perpronation hypothesis for gait in this ancient hominin. 
Finally, this work presents a visual representation of a hy-
pothesis for how an extinct human relative walked almost 
two million-years ago. It not only should improve both 
the specifics for how it is thought Au. sediba walked, but 
it should serve as inspiration and fascination for a general 
public eager to learn more about their evolutionary history 
(Pobiner 2016).  

Video Figure 4. Computer animation of Australopithecus sediba. The animation has been set at half speed to visualize the particu-
lars of gait described in the text (courtesy of S. Broadley). 
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