
Neandertal Energetics Revisited:
Insights Into Population Dynamics and Life History Evolution

ABSTRACT
Paleoanthropologists are increasingly utilizing energetic models to provide insights into hominin ecology and 
evolution. Energy dynamics represent a key interface between an organism and its environment; how energy is 
extracted from limited resources and allocated to various somatic functions has consequences for survival and re-
production. Within the past few years, several teams of researchers have reconstructed Neandertal energy budgets 
to address issues such as foraging efficiency, population density and spatial utilization, cold tolerance, and the 
replacement of Neandertals by modern humans. In the present paper, we systematically reexamine Neandertal 
energy expenditure and intake through the lens of recent developments in contemporary human biology and nu-
tritional science. We estimate Neandertal energy expenditure and dietary needs by using published sex-specific 
body mass estimates coupled with physiological information on contemporary high-latitude populations. Com-
parative data suggest that four important factors contribute to high energy requirements in Neandertals: 1) large 
body mass and high levels of muscularity; 2) exposure to severe cold stress; 3) consumption of high meat, high 
protein diets; and, 4) high levels of physical activity. Contemporary northern populations have systematically 
elevated basal metabolic rates (BMRs) compared to lower latitude groups, an apparent adaptation to chronic and 
severe cold stress. In addition, field and laboratory studies suggest high dietary protein is associated with substan-
tially increased metabolic heat production. Further, activity patterns among contemporary northern populations 
and Neandertal post-cranial morphology suggest relatively high physical activity levels. Thus, multiple lines of 
evidence point to extremely high energy requirements and intakes among Neandertals. The high turnover of 
metabolic energy in Neandertals likely had important implications for key aspects of life history, such as physical 
growth rates, age at reproductive maturity, and lifespan. Consequently, a detailed exploration of Neandertal ener-
getics provides insights into hominin population dynamics during the Middle to Upper Paleolithic transition.

The “Energetic Studies in Hominin Evolution” Symposium, Paleoanthropology Meetings, Philadelphia, PA, 27—
28 March, 2007; symposium papers guest edited by Karen Steudel-Numbers (University of Wisconsin) and Cara 
Wall-Scheffler (Seattle Pacific University).

INTRODUCTION

The evolutionary fate of Neandertals is one of the most 
intensely debated topics in paleoanthropology. Despite 

a rich fossil record that includes thousands of specimens 
and dozens of well-documented archaeological sites from 
across western Eurasia, no consensus presently exists on the 
cause of Neandertal extinction. In fact, it has been suggest-
ed by several authorities (e.g., Harvati and Harrison 2008) 
that beyond accumulating new fossil and archaeological 
materials, novel techniques and new theoretical perspec-
tives on existing fossil, archaeological, and genetic data will 
be required to settle the debate. Over the past several years, 
paleoanthropologists have begun to utilize an energetics 
approach to address key issues in Neandertal ecology and 
evolution, including foraging and locomotor efficiency (So-
rensen and Leonard 2001; Weaver and Steudel-Numbers 
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2005), cold tolerance (Aiello and Wheeler 2003; Churchill 
2008; Steegmann et al. 2002), and landscape use (Anwar et 
al. 2007). An energetics approach can provide important in-
sights into human evolution, and has been increasingly uti-
lized to study topics such as the origin of bipedalism (e.g., 
Leonard and Robertson 1995; Rodman and McHenry 1980; 
Sockol et al. 2007; Steudel-Numbers and Tilkens 2004), en-
cephalization in Homo (e.g., Aiello and Wheeler 1995; Leon-
ard et al. 2003; Leonard and Robertson 1994; Snodgrass et 
al. 2009), human nutritional evolution (Leonard 2002), and 
body size evolution (Aiello and Wells 2002; Leonard and 
Robertson 1997).

The basis for an energetics approach comes from the 
central position that energy occupies between an organism 
and its environment. As energy is a fundamental limiting 
resource in humans and other mammals, how energy is ex-
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tracted from limited environmental resources and allocated 
to various somatic functions has consequences for survival 
and reproduction (Ellison 2003, 2008; Leonard et al. 2007; 
Leonard and Ulijaszek 2002; McNab 2002). Further, ener-
getics provides a means by which to operationalize life his-
tory theory, the branch of evolutionary biology that focuses 
on trade-offs in the allocation of finite resources in order to 
maximize fitness in disparate environmental circumstances 
(Charnov 1993; Hill 1993; Hill and Hurtado 1996; Stearns 
1992). Energy used for maintenance costs, such as basal 
metabolic rate (BMR), physical activity, thermoregulation, 
immune function, and diet-induced thermogenesis, cannot 
be used for productive costs such as growth or reproduc-
tion (Ellison 2003; Leonard 2004; Ulijaszek 1995) (Figure 1). 
In turn, life history theory, with its emphasis on variables 
such as age at maturity, growth rate, fecundity, and lifes-
pan, provides an explanatory framework for demograph-
ic patterns (hill and hurtado 1996; Valeggia and ellison 
2003).  

In this paper, we revisit the issue of Neandertal ener-
getics in order to consider the evolutionary fate of Neander-
tals. The paper is divided into three sections. In the first sec-
tion, we estimate Neandertal energy budgets by using new 
data on energy expenditure among contemporary northern 
populations and recent advances in nutritional sciences. In 
the second section, we systematically review evidence for 
Neandertal subsistence patterns in order to address energy 
intake and dietary composition among Neandertals. Final-
ly, we discuss implications of Neandertal energy dynamics 
for reproductive ecology and life history evolution, and use 
this information to consider population dynamics during 
the Middle to Upper Paleolithic transition.

THE MIDDLE TO UPPER PALEOLITHIC
TRANSITION

Neandertals evolved in Europe during the Middle Pleisto-
cene following the split with the lineage leading to mod-
ern humans (Hofreiter et al. 2001; Hublin 1998, 2007; Klein 
2003; Stringer 2008). The frequency of morphological fea-
tures characteristic of Neandertals gradually increased and 
this distinct hominin group had fully emerged by 130,000 
years ago. Neandertals evolved within the context of a Eu-
ropean glacial environment and many skeletal features, 
particularly in the post-cranial skeleton, have been inter-
preted as reflecting the effects of cold adaptation and iso-
lation (Coon 1962; hoffecker 2005; holliday 1997; howell 
1952; Hublin 1998; Klein 1999, 2003; Steegmann et al. 2002; 
Trinkaus 1981). Based on morphological, behavioral, and 
adaptive differences, most advocate a species designation, 
Homo neanderthalensis (Harvati et al. 2004; Hublin 2007; Tat-
tersall and Schwartz 2008).

There is an emerging consensus that modern humans 
evolved in Africa within the past 200,000 years and later 
(~60,000 years ago) began a global dispersal that eventually 
resulted in the replacement of all other hominin species, 
including Neandertals (Conard 2006; hoffecker 2005; hub-
lin 2007; Klein 1999, Mellars 2004; Stringer 2002). Questions 
remain about the extent of gene flow between Neandertals 
and modern humans (Templeton 2002; Trinkaus 2007), al-
though most authorities interpret existing fossil and genet-
ic evidence as indicative of at most minor gene flow (Bräuer 
2006; Currat and excoffier 2004; hublin and Bailey 2006; 
Klein 2003; Mellars 2004; Serre et al. 2004; Stringer 2002).  

While the extent of temporal and geographic overlap 
of Neandertals and modern humans continues to be de-

Figure 1. Components of total energy expenditure (TEE), with metabolic costs associated with maintenance (i.e., energy necessary for 
survival on a daily basis) and production (i.e., energy costs above those needed for maintenance).
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bated, there are several lines of evidence that suggest fairly 
extensive contact and coexistence between the species. In 
Europe, conservative estimates suggest that these two spe-
cies coexisted for at least several millennia, with modern 
humans arriving before 30,000 years ago (possibly as early 
as 40,000-45,000 years ago) and Neandertals surviving until 
after 30,000 years ago (possibly as late as 28,000-24,000 years 
ago) (Bräuer 2006; davies 2001; Finlayson et al. 2006; hublin 
and Bailey 2006; Hublin et al. 1995; Mellars 2004; Trinkaus 
et al. 2003). The extent of interspecific contact likely varied 
regionally but this complex issue awaits further resolution. 
However, given evidence for extensive overlap in resource 
use—particularly the shared emphasis on the hunting of 
mammalian herbivores—there would have almost cer-
tainly been substantial resource competition (Adler et al. 
2006; Bocherens and drucker 2006; Conard 2006; O’Connell 
2006; Roebroeks et al. 1992; Shea 2003). The extent of this 
competition is the subject of intense debate and depends 
on several key factors, such as hominin population density 
and environmental carrying capacity, both of which are 
presently poorly understood. Additional evidence for pro-
longed interaction between the species comes from the oc-
currence of the Châtelperronian industry, which is gener-
ally interpreted as the product of Neandertal acculturation 
following contact with modern humans (Hublin and Bailey 
2006; mellars 1989, 2004; Stringer 2008); if confirmed, recent 
evidence for the interstratification of Châtelperronian and 
Aurignacian artifacts (Mellars et al. 2007) would strengthen 
the case for prolonged interaction. Finally, following the 
appearance of modern humans in Europe, Neandertals 
experienced a geographic range contraction that limited 
their European presence to southern and eastern refugia 
(e.g., the Iberian Peninsula); within several millennia Ne-
andertals became extinct (Hublin et al. 1995). The cause of 
Neandertal extinction remains unknown, although most 
researchers have implicated competition with modern 
humans as the primary factor (Mellars 1989; Shea 2003; 
Zubrow 1989); however, others have emphasized the role 
of deteriorating climate in the demise of the Neandertals, 
either alone (Finlayson 2004; Finlayson and giles-Pacheco 
2000) or in combination with modern human competition 
(aiello and Wheeler 2003; O’Connell 2006; Stringer 2008; 
Stringer et al. 2003).

NEANDERTAL ENERGY BUDGETS

ESTIMATING BASAL METABOLIC RATE (BMR)
Basal metabolic rate (Bmr) is defined as the minimum 
amount of energy necessary to sustain basic biological 
functions; BMR is measured in a thermoneutral environ-
ment with the subject in a post-absorptive condition (after 
a 12-hour fast) (Blaxter 1989; Leonard 2004; Ulijaszek 1995). 
In most contemporary human populations, BMR is the 
single largest component of energy expenditure and thus 
occupies a central role in estimates of population-level en-
ergy needs (FaO/WhO/UNU 1985, 2004; FNB/IOm 2002; 
Schofield 1985). Fat-free mass, in particular, is highly corre-
lated with BMR, explaining approximately 70-80% of BMR 

variation (Nelson et al. 1992; Sparti et al. 1997; Weinsier et 
al. 1992). There is considerable interpopulation variation 
in BMR independent of body size and composition, with 
relatively depressed values in tropical populations and el-
evated values in northern groups (Henry and Rees 1991; 
Leonard et al. 2002; Roberts 1978). The hypothesis that 
BMRs are elevated among indigenous northern popula-
tions as an adaptation to chronic and severe cold stress has 
generated controversy for decades, primarily because early 
metabolic studies relied on small sample sizes and often 
did not adequately control for the potentially confounding 
effects of anxiety, diet, and body composition (see review in 
Snodgrass et al. 2005). However, more recent studies with 
controlled measurement conditions have confirmed earlier 
findings by documenting relatively high Bmrs among na-
tive circumpolar groups compared to lower latitude refer-
ence populations and non-indigenous individuals living 
in the same communities (galloway et al. 2000; leonard et 
al. 2002, 2005; Rode and Shephard 1995a; Snodgrass et al. 
2005). 

Our research among three indigenous Siberian popula-
tions (the Evenki of central Siberia, the Buryat of southern 
Siberia, and the Yakut [Sakha] of eastern Siberia) has dem-
onstrated systematically elevated BMRs relative to lower 
latitude norms for body mass, fat-free mass, and surface 
area (galloway et al. 2000; leonard et al. 2002, 2005; Snod-
grass et al. 2005, 2007, 2008; Sorensen et al. 1999). Among 
the pooled Siberian sample, BMR among males (n = 115) 
is 15% above and females (n = 169) 18% above predicted 
values based on the Cunningham (1991) fat-free mass stan-
dards (Snodgrass et al. 2008) (Table 1; Figure 2). BMR is also 
significantly elevated among males (+10%) and females 
(+7%) according to the Oxford age- and sex-specific body 
mass predictive equations (Henry 2005) (see Table 1). This 
metabolic elevation is unlikely to reflect body composition 
differences between circumpolar populations and lower 
latitude groups since fat-free mass facilitates comparisons 
between different populations with diverse body sizes and 
composition. Further, the mixed diets of all three Siberian 
groups, which include their major energy component from 
carbohydrates (~45–60% of calories) and a modest consump-
tion of protein (~12–17% of calories) (Leonard et al. 2002, 
2005; Snodgrass 2004; Sorensen 2003), make it unlikely that 
BMR elevation documented in recent studies is the result 
of extreme levels of dietary protein (see discussion below). 
metabolic elevation appears to reflect a physiological adap-
tation to chronic and severe cold stress experienced in the 
circumpolar environment; this relationship with climate is 
supported by geographic studies that demonstrate a strong 
negative association between BMR and mean annual tem-
perature, which remains when controlled for differences in 
body size (Leonard et al. 1999, 2005; Roberts 1952, 1978). 
Present evidence suggests that genetic factors play an im-
portant role in structuring metabolic adaptation among 
indigenous northern populations but that short-term func-
tional responses to acute cold stress, mediated at least in 
part by thyroid hormones (particularly triiodothyronine 
[T3] and thyroxine [T4]), further elevate metabolic rate dur-
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ing winter months (Leonard et al. 1999, 2005; Mishmar et al. 
2003; Ruiz-Pesini et al. 2004; Snodgrass et al. 2005; Wallace 
2005).

Most past energetic modeling studies (e.g., Sorensen 
and Leonard 2001) have concluded that Neandertals were 
similar to contemporary northern populations in having 
elevated BMRs based on several lines of evidence. First, 
well-controlled metabolic studies described above have 
documented systematically elevated BMRs among indig-
enous northern populations from both Siberia and North 
America. Second, Neandertals evolved in Europe in the 
Middle Pleistocene within the context of a glacial environ-
ment and show morphological features (e.g., large body 
size and relatively short limbs and elongated trunks) like-
ly related to cold adaptation (Coon 1962; hoffecker 2005; 
holliday 1997; Klein 1999, 2003; ruff 1993; Trinkaus 1981). 
Third, in contrast to Upper Paleolithic modern human sites, 
Middle Paleolithic sites have not produced evidence for the 
use of sophisticated cold weather technology (e.g., tailored 
clothing) (hoffecker 2005; Klein 1999). This has generally 
been interpreted as indicative of dependence by Neander-
tals on biological mechanisms for coping with chronic and 
severe cold stress (Coon 1962; hoffecker 2005; holliday 
1997; Klein 1999; ruff 1993). It should, however, be noted 
that several authors have recently suggested that Neander-
tal dependence on biological means of cold adaptation has 
been overstated (aiello and Wheeler 2003; gilligan 2007; 
White 2006). Others (e.g., Steegmann et al. 2002) have made 
the opposite claim and argue that the extent of Neandertal 
cold adaptation has been underappreciated; this view is 
based in part on the conclusion that Neandertals had func-
tional stores of brown adipose tissue, which would have 
given them an enhanced ability to generate heat and con-
tributed to their ability to resist cold stress. While the pres-
ence of brown fat in Neandertal adults is controversial, it is 

supported by several lines of evidence, including the pres-
ence of brown fat in human newborns and non-human pri-
mates (e.g., Macaca mulatta exposed to chronic cold stress), 
its retention in some cold exposed human adults (e.g., 
outdoor workers in Finland), and recent biomedical imag-
ing research suggesting that the amount of active brown 
adipose tissue in adult humans is greater than previously 
recognized (Beall and Steegmann 2000; Chaffee et al. 1975; 
himms-hagen 1984; huttenen et al. 1981; himms-hagen 
and Ricquier 1998; Lean 1989; Nedergaard et al. 2007; van 
Marken Lichtenbelt et al. 2009). In sum, the conclusion that 
Neandertals had relatively high BMRs is well supported.

In the present study, we estimate Neandertal energy 
expenditure and dietary needs by using published sex-spe-
cific body mass estimates coupled with metabolic informa-
tion on contemporary indigenous Siberian populations. We 
used the body mass estimates of ruff et al. (1997; provided 
by Churchill 2008) for Neandertal males (77.6 kg [170.7 lbs]) 
and females (66.4 kg [146.1 lbs]) to estimate BMR from our 
Siberian regression equations (Leonard et al. 2005; Snod-
grass et al. 2007, 2008). given the presence of pronounced 
metabolic elevation and other biological adaptations to the 
cold among contemporary northern groups and evidence 
for adaptation among Neandertals to the extreme glacial 
conditions of Late Pleistocene Europe, we feel that estima-
tion of BMR for Neandertals using these data is appropri-
ate and almost certainly underestimates the magnitude of 
Neandertal long-term metabolic elevation. We also used a 
second approach to estimate Neandertal BMR, in this case 
using fat-free mass estimates to predict BMR based on the 
Siberian regression equations. Fat-free mass was estimated 
from body mass data assuming that Neandertals had a sim-
ilar body fatness as traditionally living Inuit adults (14% 
fat for males and 25% fat for females [Rode and Shephard 
1994; Shephard 1974]); this value is similar to traditionally-

TABLE 1. MEASURED BMR (means and standard error of the mean [SEM])
VERSUS PREDICTED BMR1 IN THREE INDIGENOUS SIBERIAN POPULATIONS. 
 

 Females (n=169) Males (n=115)
BMR vs. Fat Free Mass2   
Measured (kcal/day)        1378 (16) ***      1720 (26)*** 
Predicted (kcal/day)        1173.4 (9)      1490 (13) 
Percent Deviation (%)         + 17.7       + 15.2 
   
BMR vs. Body Mass3   
Measured (kcal/day)        1378 (16)***      1720 (26)*** 
Predicted (kcal/day)        1289 (10)      1575 (17) 
Percent Deviation (%)           + 7.1         + 9.5 

    1Differences between measured and predicted are statistically significant at: ***P < 0.001. 
    2Measured BMR was compared with predicted values for fat-free mass according to the 

        General predictive equation of Cunningham (1991). 
    3Measured BMR was compared with predicted values for body mass according to the  
    sex- and  age-specific Oxford predictive equations (Henry 2005).   



224 • PaleoAnthropology 2009

living nganasan reindeer herder/hunters (11% in males 
and 30% in females [Rode and Shephard 1995b]) and an av-
erage for non-Western populations (13% in males and 25% 
in females [Norgan 1994]). 

Our results suggest that Neandertal Bmrs were on 
average approximately 1800–1900 kilocalories (kcal)/day 
in males and 1500–1600 kcal/day in females (Table 2), with 
somewhat higher estimates obtained from fat-free mass es-
timates.

All previous Siberian studies and nearly all among 
Alaskan and Canadian natives were conducted during the 
warm summer months and the early fall when the study 
populations were not exposed to acute cold stress. As a re-
sult, it is difficult to ascertain the magnitude of seasonal 
metabolic fluctuations among indigenous northern popu-
lations and even more uncertain when extrapolating to 
past populations. However, several lines of evidence sug-
gest significant metabolic upregulation in response to acute 

Figure 2. Relationship between basal metabolic rate (BMR; kcal/day) and fat-free mass (kg) among indigenous Siberian men (red 
squares) and women (blue triangles) compared to the general predictive equation of Cunningham (1991) for lower latitude popula-
tions (dashed line). Siberian men average 1720 kcal/day (7,400 kJ/day), 15.2% higher than predicted values. Siberian women average 
1,378 kcal/day (5,766 kJ/day), 17.7% higher than predicted values.



Neandertal Energetics Revisited • 225

cold would have occurred seasonally in Neandertals. First, 
seasonal studies of metabolism among industrialized Euro-
pean and Japanese populations have documented metabol-
ic increases of approximately 5–15% during winter months 
compared to summer measurements, with metabolic up-
regulation negatively tracking temperature (Kashiwazaki 
1990; Osiba 1957; Plasqui et al. 2003; but see haggarty et 
al. 1994). Second, thyroid hormone profiles of northern 
populations suggest substantial seasonality in BMR, given 
that thyroid hormones increase rates of oxidative metabo-
lism throughout the body upon exposure to chronic cold 
temperatures and play an important role in structuring 
short-term cold-induced metabolic upregulation during 
winter months (Itoh 1980; leonard et al. 1999, 2005; Osiba 
1957). Exposure to cold temperatures and shifts in photo-
period lead to hormonal changes that increase the circu-
lating concentration of T3 and T4 and boost thermogenesis 
and ATP turnover (Levine et al. 1995; Silva 2003; Tkachev 
et al. 1991). Thyroid hormone levels are closely associated 
with Bmr through their direct effects on rates of oxidative 
metabolism (danzi and Klein 2003; guyton and hall 2006). 
Indigenous northern populations appear to have a greater 
propensity for seasonal thyroid elevation than non-indig-
enous residents of northern latitudes, which likely struc-
tures functional BMR upregulation in response to acute 
cold stress (Tkachev et al. 1991).  Our research among the 
Evenki, for example, has documented a link between free 
T4 levels and BMR, as well as overall elevated levels of free 
T4 compared to non-indigenous Russian residents living in 
the same communities (Leonard et al. 1999).

given the generally severe winter climatic conditions 
reconstructed for most European Neandertal sites and that 
Neandertals were likely more dependent on biological 
adaptations than contemporary northern populations, we 
conservatively estimate a seasonal BMR increase in Nean-
dertals of 20%. 

ESTIMATING PHYSICAL ACTIvITY
In order to estimate physical activity levels among Nean-
dertals, we looked to energy expenditure data from con-
temporary subsistence-level human populations. We con-
centrated on physical activity data measured using the 
doubly labeled water technique, since it measures energy 
over a relatively long period (~7–10 days) and is general-
ly accepted as the most accurate technique for measuring 
free-living energy costs in humans and other vertebrates 
(Nagy et al. 1999; Schoeller 1999; Speakman 1997). Data are 
expressed as the physical activity level (or PAL), which re-
flects activity levels as multiples of Bmr; further, Pal is a 
useful measure as it adjusts for the effects of body size. 

a large dataset published by FNB/IOm (2002) indicates 
that healthy, normal-weight adults in the United States and 
other developed nations have PALs that average 1.73 for 
males and 1.72 for females (Leonard 2008). Available data 
are scarce for subsistence populations but generally show 
PALs that are substantially higher than among industrial-
ized, urbanized nations; however, there is variation by type 
of subsistence economy, season, and measurement tech-
nique (Leonard 2008; Schulz and Schoeller 1994; Snodgrass 
2004). The best data on activity patterns among subsistence 
groups come from studies conducted among Bolivian Ay-
mara agropastoralists (Kashiwazaki et al. 1995) and gam-
bian agriculturalists (Heini et al. 1991, 1996; Singh et al. 
1989); no doubly labeled water data are available for hunt-
er-gatherers. gambian men had Pals of 2.4, which reflects 
intense physical activity associated with harvesting activi-
ties, while gambian women had somewhat lower Pals 
(1.9). Both Aymara men and women had fairly high PALs 
(2.0), which reflects the important roles that both sexes play 
in the subsistence herding and agricultural economy; how-
ever, given that the Aymara study was conducted during 
the pre-harvest season the values likely do not reflect year-
ly activity peaks. Although no doubly labeled water stud-

     TABLE 2. ESTIMATED ENERGY EXPENDITURE (kcal/day) MEANS FOR NEANDERTALS.* 

 BMR (kcal/d) Winter (kcal/d) PAL TEF (kcal/d) TEE (kcal/d)
Females      
Summer—Low Activity 1465 - 1.82 267 2933 
Summer—High Activity 1465 - 2.50 366 4029 
Winter—Low Activity 1465 293 1.82 640 3840 
Winter—High Activity 1465 293 2.50 879 5274 

     
Males      
Summer—Low Activity 1876 - 1.98 371 4085 
Summer—High Activity 1876 - 2.50 469 5159 
Winter—Low Activity 1876 375 1.98 891 5348 
Winter—High Activity 1876 375 2.50 1126 6754 

      * including basal metabolic rate (BMR), thermic effect of food (TEF), and total energy expenditure (TEE) 
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ies have been conducted among Arctic hunter-gatherers, a 
study using the time allocation method among the Igloolik 
Inuit during the early stages of economic development (go-
din and Shephard 1973) gives us some indication of energy 
patterns in a northern forager population. Inuit males had 
PALs of 1.8–2.2, with the highest values among individu-
als most involved in the traditional hunting economy. Inuit 
women at the time of the study were already less involved 
in the subsistence economy and had PALs that averaged 
1.8. However, the study may have underestimated physical 
activity costs (especially among men), since it relied on the 
time allocation method, which can significantly underesti-
mate total energy expenditure, especially at high levels of 
physical activity (Durnin 1990; Leonard et al. 1997; Snod-
grass 2004; Spurr et al. 1996). 

A meta-analysis by Leonard (2008) calculated an aver-
age for contemporary subsistence populations of 1.98 for 
males and 1.82 for females, although this likely underesti-
mates PALs since some of the data were obtained from time 
allocation studies. A PAL of approximately 2.5 appears to 
be the upper bounds of sustainable population-level energy 
expenditure (Black et al. 1996; Shetty 2005), although Pals 
obtained using doubly labeled water have been found to 
be considerably higher among other groups, including ath-
letes in training (~2.0–3.5; Black et al. 1996) and individu-
als involved in heavy physical labor (~2.8–3.1; Diaz et al. 
1991). 

In the present study, we estimated the contribution of 
physical activity to Neandertal total energy expenditures 
using two approaches: 1) PAL means for subsistence popu-
lations (1.98 in males, 1.82 in females) from Leonard (2008); 
and, 2) the high end of the sustainable activity range in con-
temporary human populations (PAL=2.5). The activity lev-
els documented among contemporary subsistence popula-
tions almost certainly underestimates Neandertal energy 
patterns given that all values were obtained from popula-
tions not fully dependent on subsistence activities (i.e., all 
the contemporary human populations are to a certain ex-
tent integrated into larger economies). The intensive forag-
ing niche occupied by Neandertals was largely focused on 
the hunting of terrestrial herbivores (Bocherens et al. 1999, 
2001; Burke 2004; Chase 1989; gaudzinski and roebroeks 
2000; hoffecker 2005; Kuhn and Stiner 2006; lieberman 
and Shea 1994; Marean and Kim 1998; Richards 2007; Rich-
ards et al. 2000; Stiner 1994) and would have entailed very 
high activity costs associated with prey search and capture. 
Further support for extremely high costs of physical activ-
ity among both Neandertal males and females comes from 
the species’ distinctive post-cranial morphology, which 
likely in part reflects a highly physically active and strenu-
ous lifestyle (Kuhn and Stiner 2006; Pearson et al. 2008; ruff 
et al. 1993, 1994; Trinkaus 1986, 1987, 1989; Trinkaus and 
Churchill 1999). In fact, the high activity estimate used here 
(i.e., PAL=2.5) may actually underestimate Neandertal en-
ergy expenditure; this was the conclusion of Sorensen and 
Leonard (2001), who used a PAL of 3.0 as the high end of 
their activity estimate.

ESTIMATING THERMIC EffECT Of fOOD
Recent studies in nutritional sciences guide our estimates 
of the thermic effect of food in Neandertals. The thermic ef-
fect of food averages approximately 6–10% of total energy 
costs in Western populations, virtually all of which con-
sume diets with carbohydrates as the largest source of en-
ergy (Leonard 2004; Wright et al. 2004). Carbohydrates and 
fats induce metabolic increases of less than 5% for the first 
few hours after a meal and thus contribute minimally to 
overall energy costs. Protein, however, substantially influ-
ences metabolic rate following a meal, inducing metabolic 
elevations of up to 30%, which may not return to normal for 
12 hours (guyton and hall 2006; reed and hill 1996; Soares 
et al. 1988). A study conducted in the 1950s among tradi-
tionally living Alaskan Inuit (Rodahl 1952) showed that the 
most elevated BMR values were found among those popu-
lations with the highest intake of protein (approximately 
130–200 g/day), even though Bmr was measured under 
standard conditions (i.e., >12 hours after the last meal). 
The Anaktuvuk Pass (Alaska) Inuit at the time of the study 
had a diet composed almost exclusively of land mammals 
(primarily caribou) and consumed approximately 200 g/
day of protein; this group had BMRs 10–15% higher than 
Inuit consuming a so-called White man’s diet. Other ear-
ly dietary studies of traditionally living Inuit in Alaska, 
Canada, and greenland showed an even greater consump-
tion of protein, which in some groups exceeded 300 g/day 
(DuBois 1928; Kemp 1971; Krogh and Krogh 1913; Rodahl 
1952; Schaefer 1981). Most studies of northern populations 
also have documented substantial seasonal fluctuations in 
protein consumption among traditionally living northern 
groups, with a 20% higher protein intake during March as 
compared to August (Rodahl 1952).

given that Neandertals consumed a high-protein diet 
primarily composed of animal source foods, and protein 
consumption may have been as high as that documented 
among historically-known Inuit, we made adjustments to 
Neandertal total energy expenditure estimates by an ad-
ditional 10% and 20% to reflect summer and winter values, 
respectively.

 
ESTIMATING TOTAL ENERGY ExPENDITURE 
(TEE)
Our Tee estimates indicate that Neandertals would have 
had extremely high total energy costs that were on the or-
der of 4000–7000 calories per day in males and 3000–5000 
calories per day in females (see Table 2). These estimates 
show considerable overlap with those calculated in other 
studies (e.g., 3000–5000 kcal/day in Neandertal females 
and 4000–6000 kcal/day in Neandertal males [Sorensen and 
leonard 2001]; 3360–4480 kcal/day for Neandertal males 
[Steegmann et al. 2002]). However, our estimates suggest 
that Neandertal energy expenditure may have been even 
higher than estimated in other studies, which reflects our 
inclusion of the energy costs associated with seasonal met-
abolic upregulation in response to acute cold stress and the 
consumption of a diet extremely high in protein. Although 
we can never be certain of the exact energy costs of life as 
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a Neandertal, we can safely conclude that their energy ex-
penditures were extremely high. 

Based on our estimates, Neandertal energy costs would 
have been at the very high end of the range for TEEs in hu-
man subsistence-level populations, such as those measured 
in gambian agriculturalists and aymara agropastoralists 
(Heini et al. 1991, 1996; Kashiwazaki et al. 1995; Singh et al. 
1989), but within the range of measurements from endur-
ance athletes in training (Black et al. 1996), soldiers during 
training exercises (Hoyt et al. 1991), and heavy manual la-
borers (Diaz et al. 1991). 

Our estimates of Neandertal energy expenditures fol-
low present evidence from contemporary human popu-
lations and include a seasonal adjustment for increased 
energy usage during winter months in response to acute 
cold stress and a high protein diet. This heightened energy 
expenditure would have occurred at precisely the time that 
energy availability would have been most limited in most 
of the Neandertal range. The consequences of this seasonal 
energy imbalance are discussed below.  

ENERGY INTAKE AND
DIETARY COMPOSITION

The energy expenditures calculated in the present study 
are surprisingly high but are even more extraordinary 
when considering that in order to sustain these expendi-
tures long-term, energy returns from foraging must be even 
higher to account for wastage, provisioning of dependents, 
and the energy costs of growth and reproduction. Data 
compiled by Sorensen and Leonard (2001) for ten contem-
porary hunter-gatherer groups document population-level 
foraging returns that are generally two-and-a-half times 
that needed simply for TEE, with approximately 1.3–1.4 as 
minimum sustainable. Neandertals were clearly capable 
of effective resource extraction, given their high energy re-
quirements and the fact that the species survived for over 
100,000 years including through repeated climatic oscilla-
tions during the Late Pleistocene. This raises the question: 
How were Neandertals able to obtain adequate calories to 
maintain their extraordinarily high energy expenditures?  

Based on evidence from archaeological and isotopic 
studies, Neandertals consumed a diet focused primarily on 
hunted animal foods; this diet emphasized medium- and 
large-bodied terrestrial herbivores and shows little evi-
dence across most of the range for a sizeable contribution 
of vegetable foods, aquatic resources, or small-bodied ani-
mals (Bocherens et al. 1999, 2001; Burke 2004; Chase 1989; 
gaudzinski and roebroeks 2000; hoffecker 2005; Kuhn and 
Stiner 2006; Marean and Kim 1998; Richards 2007; Richards 
et al. 2000; Stiner 1994). There was some regional variation 
in diet across the Neandertal range—for example, Nean-
dertals in southern parts of their range included some fish, 
marine mammals, shellfish, small animals, and plant foods 
in their diets (Finlayson 2004; Kuhn and Stiner 2006; Lev 
et al. 2005; Richards 2007; Stiner et al. 1999; Stringer et al. 
2008)—but what is truly extraordinary is the remarkable 
dietary homogeneity in the species over space and time. 
Even at sites that would have allowed access to marine 

or freshwater aquatic resources, no major contribution of 
aquatic foods to Neandertal diets has been detected (Rich-
ards 2007).

Neandertals occupied a very high trophic position that 
was focused on the consumption of medium- and large-bod-
ied terrestrial herbivores, yet this raises important questions 
related to the macronutrient composition of the diet and 
seasonal patterns of resource availability. In regards to the 
macronutrient composition of the diet, available evidence 
discussed earlier suggests that Neandertals consumed a 
high protein diet that would have required high metabolic 
costs associated with the thermic effect of food. Further, 
if Neandertal physiology was similar to modern humans, 
they may have encountered problems stemming from their 
extreme protein consumption. Contemporary humans are 
limited in the amount of protein that can be regularly con-
sumed without detrimental health effects that result from 
physiological limitations in our ability to metabolize amino 
acids (Cordain et al. 2000; Speth 1989, 1991); present data 
suggest that the protein (combined animal and plant) ceil-
ing is approximately 50% of total calories with certain seg-
ments of the population, such as pregnant women, having 
a considerably lower protein ceiling (~25%). 

There is a huge amount of dietary variation in histori-
cally-known human forager populations, with extreme 
variation in habitual protein consumption (~20–50% of 
calories; Cordain et al. 2000). As discussed above, a number 
of traditionally-living northern populations studied during 
the early 20th century obtained over 40% of their calories 
from protein and some acquired upwards of 50% of their 
calories from protein (duBois 1928; rodahl 1952; Schaeffer 
1981). However, other northern groups in the past and vir-
tually all high-latitude populations today consume lower 
levels of protein; in some traditionally living groups this 
was achieved through the consumption of a high-fat, ma-
rine mammal dominated diet, while in more economically 
developed populations, carbohydrates provide the largest 
share of dietary energy (Ho et al. 1972; Leonard et al. 2005; 
Schaeffer 1981; Shephard and rode 1996). 

Further insights into Neandertal dietary composition 
come from our knowledge of the geographic patterning 
of diet among contemporary human foragers. These stud-
ies show that the contribution of plant foods is generally 
lower in more northern regions and there is a correspond-
ing increase in the dependence on aquatic resources (e.g., 
fish and marine mammals) (Cordain et al. 2000; Kelly 1995; 
marlowe 2005). This pattern suggests that fish and other 
aquatic resources would have been a major contributor to 
Neandertal diets, especially in northern parts of the range, 
yet available archaeological evidence and stable isotope 
data suggest that aquatic resources were only taken op-
portunistically and were only a minor dietary item (Kuhn 
and Stiner 2006; Richards 2007; Stiner et al. 1999). Although 
there is some evidence for the use of plant foods among 
Neandertals, especially from lower latitude sites (e.g., Lev 
et al. 2005), there is presently no solid evidence that plant 
foods comprised a major part of the Neandertal diet. While 
preservation issues likely bias our reconstruction of Nean-
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dertal diets by underestimating the contribution of plant 
foods, the lack of evidence for intensive plant processing 
technology supports the conclusion that plant foods played 
at most a minor role in the diet (Kuhn and Stiner 2006). 
Taken together, this evidence suggests a relatively minor 
role for carbohydrates in Neandertal diets.

Fats, with their high energy density and near univer-
sal desirability (Speth and Spielmann 1983), must have 
played a critical role in Neandertal diets, an idea advanced 
by several authors (e.g., Cachel 1997). However, given the 
extremely limited and geographically localized evidence 
for marine mammal use by Neandertals, the primary fat 
source would have been terrestrial mammals. Consequent-
ly, fats would have been available in limited quantities dur-
ing certain seasons as a result of yearly changes in the body 
composition of prey foods (Cordain et al. 2002; Speth 1991). 
Several strategies could have maximized fat acquisition in 
Neandertals, including focusing on large-bodied mammals 
(larger mammals typically have a relatively high fat con-
tent compared to smaller mammals [Calder 1984; Pitts and 
Bullard 1968]), consuming fat-rich tissues (e.g., marrow 
and brains) (Finch and Stanford 2004), and the selective tar-
geting of prey species and individuals for high fat content. 
Still, one cannot escape the conclusion that Neandertals, 
especially those in northern and eastern areas, would have 
experienced pronounced seasonal limitations in fat avail-
ability that would have forced their reliance on protein and 
would have led to periods of intense energy stress.

  
IMPLICATIONS Of ENERGY DYNAMICS fOR 

NEANDERTAL ExTINCTION
The high turnover of metabolic energy reconstructed for 
Neandertals, combined with severe limitations on energy 
availability, would have almost certainly shaped Neander-
tal life history traits, including growth rate, reproductive 
patterns (e.g., age at first birth and interbirth interval), and 
lifespan. Here, we consider the issue of how Neandertal en-
ergy dynamics may have shaped reproductive ecology and 
population dynamics in the Middle Pleistocene. Although 
much of this section is highly speculative, we believe that 
our interpretations and extrapolations are well supported 
by the available evidence. The following section is divided 
into two parts. In the first, we focus on Neandertal repro-
ductive ecology and consider the effects of climatic deterio-
ration on Neandertal population dynamics. In the second, 
we review and contrast energy patterns between modern 
humans and Neandertals, and consider the role that mod-
ern humans could have played in the extinction of Nean-
dertals. 

Recent research in human biology has revealed that 
multiple energetic variables, not just the size of energy 
stores (i.e., body fat), influence female reproductive physi-
ology and shape reproductive capacity (i.e., fecundity) (see 
review in Ellison 2008). Studies of athletes and subsistence 
populations have consistently shown that in addition to fat 
stores, both energy balance (i.e., whether gaining or losing 
weight, and how fast) and energy flux (i.e., the rate of en-
ergy turnover) influence ovarian function and affect fecun-

dity (Bullen et al. 1985; Ellison 2001, 2003, 2008; Jasienska 
and Ellison 1998; Panter-Brick et al. 1993). Research on Pol-
ish farmers by Jasienska and Ellison (1998, 2004), for exam-
ple, demonstrates that even with adequate nutritional in-
take, seasonally-increased physical activity associated with 
the harvest season can lead to downregulation of ovarian 
function and a reduced probability of conception. Ovarian 
function has been shown to be highly sensitive to energetic 
conditions and, in particular, energy expenditure; relative-
ly small changes in energy expenditure, energy intake, or 
energy stores have been linked to rapid alterations in ovar-
ian hormone levels which affect fecundity (ellison 2001, 
2003, 2008; Ellison et al. 1993; Jasienska and Ellison 1998; 
Lipson and Ellison 1996; Panter-Brick et al. 1993). This con-
tinuum of ovarian function, with facultative modulation of 
ovarian hormones and fecundity in response to energetic 
parameters, serves to optimize the energy allocated to re-
production (Ellison 2001, 2003, 2008; Jasienska and Ellison 
2004). In fact, seasonal shifts in energy patterns among con-
temporary humans, which result from dietary and/or ac-
tivity changes, can have profound effects on the timing of 
conception and are important contributors to human birth 
seasonality (ellison 2001, 2008; ellison et al. 2005). Other 
primates, including common chimpanzees (Pan troglodytes) 
and orangutans (Pongo pygmaeus), have been shown to have 
similar reproductive physiology in the response of fecun-
dity to energy dynamics (Emery Thompson 2005; Emery 
Thompson et al. 2007; Emery Thompson and Wrangham 
2008; Knott 2001). 

The similarities in female reproductive function in re-
sponse to energy fluctuations in living humans and extant 
hominoids argues for a similar response in other hominin 
species, including Neandertals. This strongly suggests that 
the extremely high metabolic rates reconstructed for Ne-
andertals would limit energy available for reproduction 
and would have contributed to a pattern of relatively low 
overall fertility and pronounced birth seasonality. This hy-
pothesis follows from several lines of evidence. First, ex-
tremely high energy costs associated with large body size, 
high physical activity levels, thermic effect of food, and 
high costs of thermoregulation coupled with a high-risk, 
energy-intensive subsistence strategy that would have had 
pronounced seasonal and periodic fluctuations in energy 
availability would have limited energy available for repro-
duction; this would have had profound effects on fecundity 
and likely would have shaped reproductive parameters 
such as interbirth interval (Ellison 2001, 2003, 2008; McNab 
2002; Ricklefs 1973; Sorensen and Leonard 2001). A num-
ber of traditionally-living human populations from north-
ern regions have been shown to experience pronounced 
birth seasonality (e.g., Condon 1991; Condon and Scaglion 
1982), which recent research suggests is shaped by energy 
dynamics. A similar conclusion on seasonality was drawn 
by Mussi (2007) who argued that early hominin popula-
tions in Europe would have experienced pronounced birth 
seasonality with the peak of conceptions in the late sum-
mer and early fall in response to increasing energy avail-
able from the fat stores of terrestrial mammals. Second, Ne-
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andertals do not appear to have had a pronounced sexual 
division of labor (see review in Kuhn and Stiner 2006); the 
participation of Neandertal females in energy-intensive 
hunting activities would have required high physical activ-
ity levels. This would have increased the energetic burden 
on females and may have contributed to lower fecundity, 
especially during certain times of the year. Third, relatively 
low fertility rates (along with high mortality rates), may 
have contributed to the relatively low population densities 
documented among Neandertals (Conard 2006; hoffecker 
2005; Kuhn and Stiner 2006; Mellars 1998). 

Additional information on Neandertal demography 
comes from skeletal studies that document high rates of 
injury, high mortality risk (among both adults and sub-
adults), and a relatively low life expectancy (Berger and 
Trinkaus 1995; Caspari and Lee 2004; Klein 1999; Trinkaus 
1995). The harsh environment of glacial Europe would have 
exposed Neandertals not only to severe cold stress but also 
to dramatic fluctuations in resource availability within the 
context of a low energy terrestrial ecosystem. The relatively 
shorter life expectancy and high subadult mortality experi-
enced by Neandertals would have also contributed to low 
fertility and small population size (Caspari and Lee 2004; 
Klein 1999; Pettitt 2000; Trinkaus 1986, 1987, 1989, 1995). 

High resolution climatic data document rapidly de-
teriorating climatic conditions in Europe during the Late 
Pleistocene and into the Upper Pleniglacial, with maximum 
cold conditions during the last glacial maximum (24,000–
21,000 years ago) (aiello and Wheeler 2003; hoffecker 2005; 
Stringer 2008; Stringer et al. 2003). In particular, the increas-
ingly severe climatic fluctuations that brought on a rapid 
and prolonged temperature drop at approximately 30,000 
years ago would likely have strained Neandertal popula-
tions and contributed to major demographic shifts (String-
er 2008; Stringer et al. 2003). These effects may have come 
directly through increased cold injury and hypothermia, 
as well as indirectly through altered resource availability 
and increased energy costs. Neandertals were highly sen-
sitive to environmental conditions, including temperature, 
and were unable to inhabit the colder, drier high-latitude 
arctic or subarctic zones where winter temperatures fell 
substantially below freezing; relatively minor changes in 
climate have been shown to have led to major distribution-
al changes (Aiello and Wheeler 2003; Burke 2004; Conard 
2006; hoffecker 2005; hoffecker and elias 2003; Kuhn and 
Stiner 2006; Mellars 1998). The severity of the climatic dete-
rioration can also be seen in the dramatic effects it had on 
modern human populations, which included population 
decreases and range contractions. These effects occurred 
even though modern humans had sophisticated technol-
ogy for buffering from cold stress and a broader, more 
flexible dietary strategy than Neandertals (hoffecker 2005; 
Hublin 1998). The availability of information provided by 
high-resolution climatic data has recently led a number of 
researchers to emphasize the role of climatic deterioration 
and environmental change in models of Neandertal extinc-
tion (Aiello and Wheeler 2003; Finlayson 2004; Finlayson 
and giles-Pacheco 2000; O’Connell 2006; Stringer 2008; 

Stringer et al. 2003).  
given this evidence that climatic change would have 

had a major effect on Neandertal populations, this raises 
questions about whether modern humans played a sup-
porting role in the extinction of Neandertals. In order to 
address this issue, we must consider two questions. First, 
did competition with modern humans lead to a reduction 
in resources available to Neandertals? And second, did this 
resource reduction contribute to Neandertal extinction? 
The answer to the first question hinges on evidence for in-
terspecific contact, as well as the reconstruction of hominin 
population parameters and details of environmental carry-
ing capacity. As discussed above, there clearly was tempo-
ral and geographic overlap between modern humans and 
Neandertals in Europe and the Near East, with several lines 
of evidence strongly suggesting interactions between the 
species. The extensive overlap in resource use, with both 
species primarily dependent on the hunting of medium- 
and large-bodied terrestrial herbivores, is one of the stron-
gest pieces of evidence that there would have been exten-
sive resource competition (Adler et al. 2006; Bocherens and 
Drucker 2006; Conard 2006; Drucker and Bocherens 2004; 
O’Connell 2006; roebroeks et al. 1992; Shea 2003). There 
does appear to have been regional variation in the nature of 
interaction and the severity of competition between species 
(Conard 2006). Regions with limited plants and aquatic re-
sources, such as parts of Eastern Europe and Russia, appear 
to have experienced more rapid replacement of Neandertals 
by modern humans; this may reflect a more intense compe-
tition between the species for similar terrestrial mammal 
prey (hoffecker 2005). Southern areas, with their broader 
resource base, appear to have experienced reduced com-
petition; this probably resulted from an increased dietary 
breadth of modern humans in these regions that included 
more intense use of fish, small-bodied birds and mammals, 
and plant foods (Burke 2004; hoffecker 2005; Klein 2003; 
Munzell and Conard 2004; Richards 2007; Richards et al. 
2001; Stewart 2004; Stiner 2001, 2002; Stiner et al. 2000). The 
broadening of the modern human diet in the Upper Pa-
leolithic, which included lower ranked prey that required 
greater investment in capture and processing, may indicate 
a depletion of higher ranked resources, such as medium- 
to large-bodied terrestrial herbivores (O’Connell 2006). In 
sum, there is solid evidence for contact and resource com-
petition between the species, with some indication of re-
duced resources available to Neandertals.

To answer the second question, we can use an ener-
getics perspective to evaluate key behavioral and biologi-
cal differences between modern humans and Neandertals 
that may have affected fertility and demography. We focus 
here on four key differences. First, the body sizes of Up-
per Paleolithic humans were significantly smaller than Ne-
andertals (ruff et al. 1997), which would have translated 
into absolutely lower BMRs and reduced total energy costs. 
even relatively small differences in body weight (~5–10 kg) 
could have substantially reduced metabolic costs.

Second, cultural and technological changes that in-
creased cold weather protection would have dramatically 
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reduced the costs associated with thermoregulation in 
modern humans. Archaeological evidence strongly sug-
gests major differences between Neandertals and modern 
humans in cold-related technology, with the latter showing 
a greater investment in shelter construction, more efficient 
hearths, and more complex (i.e., tailored) clothing (goebel 
1999; hoffecker 2002, 2005; Klein 1999; Soffer 1985; Soffer 
et al. 2000; Trinkaus 2005). In addition to lowering energy 
costs associated with thermoregulation, cold protection 
technology in modern humans likely enhanced their ability 
to perform subsistence tasks in cold conditions. 

Third, differences in technology and social organiza-
tion in modern humans may have reduced physical activity 
and lowered total energy costs. Technological changes that 
began in the Upper Paleolithic, such as refinements in tools 
that increased hunting efficiency through increased cap-
ture and processing ability, may have contributed to lower 
activity costs in modern humans (Bar-Yosef 2007; Conard 
2006; Conard et al. 2006; Klein 1999; Marean 2007). Sup-
port for this idea comes from studies of the introduction of 
labor-saving technology in traditionally living contempo-
rary human populations, which have been shown to lead to 
changes in reproduction and an overall increase in fertility 
(Kramer and McMillan 2006). The appearance of popula-
tion-level, sex-based division of labor in modern humans, 
postulated by several authors (Kuhn and Stiner 2006; Soffer 
1994), may have reduced female energetic costs by trans-
ferring more of the energetic burden to males. Some sup-
port for sex-based energetic differences comes from activ-
ity data from three hunter-gatherer groups (!Kung, Ache, 
and Inuit) and several other subsistence populations (e.g., 
evenki reindeer herders and gambian agriculturalists); 
these data show that men on average are moderately more 
physically active than women (Panter-Brick 2002; Leonard 
2008), although the differences are small and should be in-
terpreted with caution. The emergence of a sex-based divi-
sion of labor also may have increased resource extraction 
ability and increased environmental buffering through use 
of a broader diet (Kuhn and Stiner 2006). 

Finally, dietary patterns and resource utilization in 
modern humans may have contributed to more favorable 
energy dynamics compared to Neandertals. Although Up-
per Paleolithic humans appear to have relied upon many 
of the same resources as Neandertals, including medium- 
and large-bodied terrestrial mammals, they did this within 
a broader, more flexible diet that included a greater range 
of resources, including fish, small-bodied prey, and plant 
foods (hoffecker 2005; munzell and Conard 2004; richards 
2007; Richards et al. 2001; Stewart 2004; Stiner 2001, 2002; 
Stiner et al. 2000). These dietary differences and improved 
efficiency in resource acquisition were likely accomplished 
through technological developments that allowed more 
efficient hunting, including more efficient predation on 
very large mammals (e.g., mammoths), as well as the use 
of snares, nets, and traps to capture small prey (hoffeck-
er 2005). The increased ability to extract energy and nu-
trients from foods through processing and food storage 
would also have contributed to differences in energy avail-

ability (Conard 2006; Conard et al. 2006; hoffecker 2005; 
O’Connell 2006). Further, the expansion of social ties and 
long-distance exchange networks may have served to buf-
fer against resource shortages and to have minimized risk 
(adler et al. 2006; gamble 1996, 1999; horan et al. 2005; 
mcBrearty and Brooks 2000). These key differences in diet, 
most likely including overall increase in energy availability 
as a result of increased fat and carbohydrate consumption, 
may have contributed to more favorable energy dynamics 
and increased reproductive success.

In conclusion, Neandertals occupied an ecologically 
precarious position in the Late Pleistocene that was highly 
sensitive to environmental change. The high-risk, energy-
intensive subsistence strategy of Neandertals likely had 
consequences for both mortality and fertility. The deterio-
rating climate in the terminal Late Pleistocene would have 
presented severe challenges for the survival of the species, 
even without competition from modern humans. However, 
given evidence for resource competition and the potential 
for competitive exclusion, especially within the context of 
climatic deterioration, we cannot discount a role for mod-
ern humans. If the two species were in direct competition, 
several behavioral and biological features of modern hu-
mans would have led to more favorable energetic profiles 
and may have contributed to higher fertility and served as 
a competitive advantage. even small differences in mortal-
ity or fertility, as demonstrated by Zubrow (1989), could 
lead to fairly rapid (<1000 years) extinction of Neandertals 
and replacement by modern humans.
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