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ABSTRACT
Prehistoric human populations were influenced by climate change and resulting environmental variability and 
developed a wide variety of cultural mechanisms to deal with these conditions. In an effort to understand the in-
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INTRoduCTIoN

to what extent have the tempo and mode of human 
population dispersals and the geography of past cul-

tural traditions corresponded with environmental variabil-
ity during prehistory? Human populations have adapted 
to the environment via sophisticated, often specialized, 
subsistence strategies, allowing human cultures to spread 
across a wide range of latitudes, altitudes, and ecological 
zones. Generalized adaptations have the advantage of flex-
ibility. Complex and specialized adaptations have allowed 
for the exploitation of inhospitable regions, but at the same 
time may have increased some cultures’ dependence on 
particular ecological settings and made such adaptations 
more vulnerable to rapid environmental change. Establish-
ing methods to evaluate the rules and driving forces behind 
these human-environment interactions is critical if we are 
to assess and understand the influence of environmental 
constraints on social and technical systems, cognition, and 
communication. Identification of the geography and vari-
ability of past culturally coherent human groups and vari-
ability is critical to understanding the complex mechanisms 
that have shaped the interactions among genetics, linguis-
tics, cultural affiliation, and climate.

The topic of human-environment interaction is recur-
rent in the fields of paleoanthropology and human ecol-
ogy (e.g., Binford 2001; Collard and Foley 2002; deMenocal 
2004; Feakins et al. 2005; Foley 1984, 1994; Nettle 1996, 1998; 
Potts 1996), with some issues and questions being more re-
solved than others. The disciplines of paleoanthropology 
and archaeology can now incorporate and refine a new set 
of analytical tools to address the topics identified above 
and to test current hypotheses. These new tools and their 
associated methodological approach, termed Eco-Cultur-
al Niche Modeling (ECNM), are derived from Ecological 
Niche Modeling (ENM) and the disciplines of biology and 
evolutionary ecology (Soberón and Peterson 2004). ENM 
has demonstrated its effectiveness in estimating ecologi-
cal niches of plant and animal species, and predicting their 
geographic distributions, based on biotic and environmen-
tal data. ECNM applies the same methodological approach 
to analyses of the archaeological record and prehistoric hu-
man cultures. 

The feasibility of applying ENM methods and protocols 
to the archaeological record was first explored at a National 

Science Foundation-funded workshop, 11–13 March 2004, 
at the University of Kansas, Lawrence, organized by two 
of us (Krishtalka and West). The 23 participants drew from 
Old and New World archaeology, paleobiology, biodiver-
sity science, climatology, geography, computer science, and 
informatics to: 1) establish the current state of ecological 
and eco-cultural niche modeling; 2) identify opportunities 
and constraints of ECNM; and, 3) determine proof-of-con-
cept projects and an immediate timetable to test applica-
tions of ECNM with the New and Old World archaeologi-
cal records.

A follow-up workshop at the Musée National de Préhis-
toire in Les Eyzies, France, 22–26 September 2005, was or-
ganized by d’Errico and Dibble, and was jointly funded by 
the NSF and the European Science Foundation (ESF), in 
keeping with a component of the ESF’s “Origins of Man, 
Language, and Languages” EUROCORE program aimed at 
evaluating the size, degree of adaptation to environmen-
tal conditions, geography, and movements of past human 
populations.  

ECo-CulTuRAl NICHE ModElINg ovERvIEw
ECNM and its associated theoretical and methodological 
underpinnings allow us to explore the complexity of recip-
rocal impacts between human and natural systems in the 
history, adaptations, and movements of archaeological peo-
ples. This approach combines multiple disciplines and re-
search emphases to turn centuries of archaeological descrip-
tion into prediction―to understand and model the ecology 
of human and hominid populations. Modeling eco-cultural 
niches across time and space requires capturing, digitizing, 
and sharing data from numerous disparate sources. Only 
such cooperation and integration can realize the enormous 
potential for using ECNM to test archaeological theory and 
generate quantitatively robust hypotheses regarding an-
cient human populations.

Colleagues familiar with archaeological predictive 
modeling and geographic information systems (GIS) will 
identify many parallels with ECNM.  Inductive approach-
es, exploratory data analysis, and predictive modeling be-
came common in recent decades as data became automated 
and computation-intensive applications became as close as 
one’s own desktop (e.g., Allen et al. 1990; Judge and Sebas-
tian 1988; Lock and Stančič 1995; Maschner 1996). Well es-
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tablished precedents in archaeology include such seminal 
works as Jochim’s (1976) predictive model of Mesolithic 
subsistence and settlement and the integration of GIS and 
multivariate statistics by Kvamme (1983). Several advances 
proposed by ECNM include the use of new algorithms, 
more diverse data integration, and greater scales of analy-
sis.

The ENM software platform that has been used in most 
of the exploratory ECNM applications is the Genetic Algo-
rithm for Rule-Set Prediction (GARP). GARP is part of a 
larger biocomputational architecture that integrates biotic 
and environmental data to produce predictive geographic 
models of species’ occurrences, potential distribution pat-
terns, and related complex biodiversity phenomena that 
were previously intractable (Peterson 2003; Peterson et 
al. 2003; Peterson et al. 2005a; Sánchez-Cordero and Mar-
tínez-Meyer 2000; Thomas et al. 2004). This evolutionary 
computing application has been applied successfully to a 
diverse group of topics such as biodiversity conservation 
(Chen and Peterson 2002; Peterson et al. 2000), effects of cli-
mate change on species’ distributions (Peterson et al. 2005b; 
Thomas et al. 2004), geographic potential of species inva-
sions (Peterson 2003; Peterson and Vieglais 2001), and pre-
diction of the spread of emerging diseases (Peterson et al. 
2004; Peterson et al. 2005a; Peterson et al. in press).

ENM data requirements include geographic occur-
rence points for species of interest and raster GIS data lay-
ers summarizing landscape, ecological, and environmental 
dimensions that may be involved in limiting the potential 
geographic distribution of the species of interest. In GARP, 
occurrence data are related to landscape variables to devel-
op a heterogeneous rule-set that defines the distribution of 
a species in ecological space (Soberón and Peterson 2005), 
which in turn can be projected onto landscapes to predict 
potential geographic distributions. GARP accomplishes 
this task by relating ecological characteristics of species’ 
geographic occurrences to background observations ran-
domly sampled from the study region. The result is a set of 
decision rules that best summarize factors associated with 
the species’ presence, thereby constituting a model of that 
species’ ecological niche.

GARP has seen extensive improvement and testing in 
recent years, including detailed sensitivity analyses (Pe-
terson and Cohoon 1999; Stockwell and Peterson 2002a, 
2002b; Anderson et al. 2002). A recently developed desktop 
version of GARP offers a greatly improved user interface; 
in particular, many processes are automated, permitting 
analysis and testing of different hypotheses: (1) jackknif-
ing inclusion/exclusion of ecological/environmental data 
layers (Peterson and Cohoon 1999); (2) bootstrapping in-
clusion of species’ occurrence points; and, (3) jackknifing 
inclusion/exclusion of predictive algorithms within the ge-
netic algorithm. The desktop version of GARP, developed 
at the University of Kansas Biodiversity Research Center, is 
now available for free download (http://www.lifemapper.
org/desktopgarp/).

When ENM is applied to geographic and ecological 
distributions of human cultures―i.e., ECNM―it is human 

culture that occupies an ecological space, and occurrences 
of archaeological sites and material culture are used to de-
velop eco-cultural niche models in ecological dimensions 
only. There is still some uncertainty as to what level of 
specificity ECNM can be used to examine human groups. 
The biological disciplines have shown these methodologies 
to be effective in determining the actual and potential dis-
tributions of animal species. Thus, at its most basic level, 
ECNM should be able to be used to examine human adap-
tive systems. The next issue that needs to be addressed is 
how to use ECNM to identify and examine the variability 
seen in the archaeological record with reference to tech-
nocomplexes, economies, and ethno-linguistic groups, for 
example. In applying GARP to the archaeological record, 
cultural distributions are modeled for specific time periods 
and then interpreted relative to the associated ecological 
dimensions. With reference to biological species, ecological 
niches have been shown to be conservative at regional and 
continental scales (Peterson 2003; Peterson et al. 2002), so 
one aim of ECNM is to test if the same holds true for cul-
tural groups—i.e., equally robust and accurate eco-cultural 
niche models.

ECNM identifies geographic regions for archaeologi-
cally defined populations that represent the eco-cultural 
niches and models potential geographic distributions for 
those populations. Specifically, GARP and other modeling 
tools can be used to reconstruct past human systems in the 
Old and New World, as well as features of past natural sys-
tems within which they operated (e.g., distributions of prey 
species) in the context of geological, paleobiological, and 
paleoenvironmental conditions. Once initial hypotheses 
are developed, ECNM can be used to develop informed, 
testable hypotheses concerning the geographic spread, mi-
gration, and eco-cultural adaptations of prehistoric human 
populations to their respective environments.  

ClIMATE, PAlEoENvIRoNMENTS,
ANd CHRoNology

ECNM integrates and analyzes a wide range of data. Be-
cause human-environment interactions are the focus of 
ECNM, climate data and environmental reconstructions, 
derived from a variety of proxy data, are key (e.g., marine 
sediment cores, ice cores, terrestrial proxy records). For 
example, the isotopic makeup of air bubbles trapped in 
Antarctic ice allow for reconstruction of the history of at-
mospheric gas concentrations over the past 800,000 years 
(Spahni et al. 2005); the isotopic composition of Greenland 
ice implies a series of abrupt warming events (Dansgaard-
Oeschger events) that punctuated the last ice age (Dans-
gaard et al. 1993); layers of detritic material accumulated 
on the North Atlantic sea-floor indicate massive iceberg 
discharges termed Heinrich events (Heinrich 1988). Past 
vegetation patterns can be reconstructed from fossil pol-
len in peat-bogs, lake sediments, and off-shore deep-sea 
sediments. Moreover, multi-proxy analyses of a variety 
of terrestrial archives (e.g., lakes, peat bogs, speleothems) 
provide information on past climatic and environmental 
changes. However, most detailed and high-resolution re-
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cords extend only over the past ca 20 kyr B.P. and only a 
few long terrestrial records have the necessary resolution to 
document millennial-scale changes during the whole of the 
last glacial period. It is therefore challenging to establish 
accurate chronologies for these long terrestrial records and 
to link them precisely to other high-resolution records so 
that the nature of such changes, and ultimately the cause 
of these fluctuations, can be understood. Such changes cer-
tainly had profound impacts on prehistoric human popula-
tions.

Using these data in ECNM analyses presents a number 
of challenges. One common difficulty is building a uniform 
time scale for all these records. With respect to chronol-
ogy, we must be reasonably certain that the sample of ar-
chaeological sites used to document distributions reflects 
chronological cultural reality and coincides with the pa-
leoenvironmental data used. Some obvious questions pres-
ent themselves. What types of dates should be used? What 
levels of uncertainty are acceptable? What strategy do we 
use to tackle the issue of 14C calibration for periods prior 
to 26k BP? Internationally agreed-upon timescales exist 
for those records that can be radiocarbon dated, and Mé-
not-Combes et al. (2005) have illustrated recent attempts to 
develop uniform radiocarbon calibrations. At present, ra-
diocarbon calibration curves, such as the widely accepted 
IntCal04 (Reimer et al. 2004), have been reliably extended 
back to 26 kyr B.P, but for older ages, the available “cali-
bration” data series diverge to a large extent and are not 
included in the recent IntCal04 dataset. Beyond 26 kyr BP, 
it has been suggested that these data series should be re-
garded as comparison curves rather than calibration curves 
(Beck et al. 2001; Richards and Beck 2001; van der Plicht 
2000). For the interval between 33,000 and 41,000 cal BP, 
the record of the Iberian Margin agrees with the IntCal98 
coral data and the Cariaco record (Bard et al. 2004). Contin-
ued comparative analyses of diverse and complementary 
records, along with hyperpurification methods associated 
with AMS dating (Mellars 2006), will help to refine radio-
carbon chronologies.

The use of records with independent sources of pa-
leoenvironmental information can minimize problems as-
sociated with chronological resolution. A good example 
is off-shore deep-sea records, which contain marine fossil 
assemblages (used to reconstruct sea-surface temperatures 
and hence identify Dansgaard-Oeschger (D/O) events), 
fossil pollen, and ice-rafted detritus (to identify Heinrich 
events). Pollen records from deep-sea cores off the Iberian 
Peninsula provide a detailed record of vegetation changes 
associated with D/O climatic variability. Transfer functions 
based on modern pollen spectra applied to pollen data 
from these sequences predict past temperature and precipi-
tation patterns for the continent (Figure 1). The results in-
dicate that the impact of D/O cycles was spatially variable, 
and these findings are comparable to the results of mod-
eled vegetation responses for the same region (Sepulchre et 
al. 2005). Additionally, most paleoenvironmental data sets 
must be modified before they can be used in ECNM analy-
ses. For example, although ECNM may require tempera-

ture and precipitation data, the actual paleoenvironmen-
tal information consists of local fossil pollen assemblages. 
“Spatial-to-temporal mapping,” a best analogue technique 
(Guiot 1990; Peyron et al. 1998), can be used to infer past 
environmental conditions, as well as develop and test envi-
ronmental models to be incorporated into an ECNM analy-
sis. However, this technique’s accuracy may be limited by 
various factors, including low CO2 concentrations during 
the last glacial era as compared to present-day concentra-
tions (e.g., Cowling and Sykes 1999; Harrison and Prentice 
2003; Jolly and Haxeltine 1997). 

ECNM also requires data with high spatial resolution, 
in most cases at landscape scales. Statistical downscaling 
techniques exist (e.g., Palutikof et al. 2002), but the last gla-
cial period differed so greatly from the present that it is es-
sential to resort to climate models. The best objective source 
of such information is general circulation models, which 
reconstruct past, present, and future climates for the entire 
globe at a resolution of 100–200 km (e.g., the Hadley Cen-
tre Model – Gordon et al. 2000). The alternative is regional 
climate models, but these simulations need to be driven by 
“boundary conditions” drawn from a general circulation 
model (Ramstein et al. 2005). 

General circulation models are usually run for specific 
points in time, typically the Last Glacial Maximum (LGM), 
Last Interglacial, or the Mid-Holocene; scenarios falling 
between these benchmark dates require interpolation. The 
only parameters that must be specified are greenhouse gas 
concentrations, orbital forcing, and land-sea orographic 
configuration. The results of various climate models are 
integrated, collated, and archived in a central database 
(http://www-lsce.cea.fr/pmip; Crucifix et al. 2005). The goal 
behind these simulations is to understand mechanisms of 
climate change, and as such they may at times be incompat-
ible locally with paleoenvironmental observations. Alter-
native approaches, in which paleoenvironmental informa-
tion is assimilated into the simulation process to produce 
a climatic map simultaneously compatible with data and 
physical constraints on atmosphere and ocean dynamics, 
are still under development.

Paleontological data also have the potential to serve as 
proxies for past regional environmental conditions. An ex-
ploration of the ecological dynamics of large mammal com-
munities in southwestern Europe between 45 kyr and 10 
kyr BP based on a sample of 230 sites and 755 mammal as-
sociations indicates a clear diversity gradient from SW/NE 
with lower biomass towards the SW (Brugal and Yravedra 
2006). These analytical indices have proven to be ecologi-
cally and functionally meaningful, but problems associated 
with a reliance on conventional radiocarbon determinations 
and the potential for stratigraphic mixing of archaeological 
and paleontological assemblages must be addressed before 
such approaches can be reliably incorporated into regional 
modeling attempts. Prehistoric environmental conditions 
for portions of Western Africa have been inferred from 
statistical examinations of archaeozoological bovid assem-
blages (Jousse and Escarguel 2006). These results are useful 
in identifying refuge areas for some vegetation communi-
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ties, have proven to be valid at a local scale, and comple-
ment available pollen data. Expanding this approach to 
more diverse faunal assemblages will likely increase the 
resolution of regional paleoenvironmental models that can 
be used to complement ECNM analyses.

ARCHAEologICAl, PAlEoANTHRoPologICAl, 
ANd ETHNolINguISTIC dATA

A primary goal of ECNM is to evaluate, simulate, and re-
construct how ancient human populations could have re-
sponded to climatic fluctuations and to understand which 
climatic factors most impacted these populations. With re-
spect to Upper Paleolithic populations, we would expect 
more geographically extensive cultural units during stadi-
als and more restricted distributions during interstadials, a 
prediction based on correlations between ethno-linguistic 
and environmental parameters (Collard and Foley 2002; 
Nettle 1998) and partly supported by analyses of AMS-dat-
ed site distributions and climatic fluctuations that indicate 
increased frequency of archaeological sites in Western Eu-
rope during each cold event prior to the Holocene (d’Errico 
et al. 2006). Related relevant evidence consists of linkages 
between vegetational change, herbivore/ungulate popula-
tions, and responses of human groups.

An ECNM analysis based on abiotic environmental pa-
rameters and 18 archaeological sites dated by AMS to 21±0.5 
kyr BP and associated with the Solutrean technocomplex 
was performed as a pilot application of the methodology 
described above. The Solutrean was chosen for a number 
of reasons. First, it is marked by the use of a specialized 
process for making highly diagnostic stone tools unique to 
the Upper Paleolithic in Western Europe. This technology 
represents a specific cultural adaptation to environmental 
conditions during the LGM, thus making it ideal for an 
ECNM study. This technocomplex also had a relatively 
narrow geographic range (France, Spain, and Portugal) and 
was present in these regions during a restricted time period 
of the Upper Paleolithic. Therefore, one is able to avoid the 
resolution problems typical of studies that cover broader 
time spans and greater cultural variability. 

The GARP modeling results indicate that temperature 
was the variable that most influenced the potential distribu-
tion of the Solutrean technocomplex. The ability to produce 
ECNMs while jackknifing the inclusion of environmental 
variables allows for such patterns to be identified (Peter-
son and Cohoon 1999:163). Such jackknife manipulation 
involves systematically eliminating each environmental 
variable from specific modeling runs. In other words, one 

Figure 1. Palaeoclimatic records from the Iberian margin cores MD95-2042 and MD95-2043, and their comparison with the GISP2 
δ18O curve. Blue intervals indicate Heinrich events (H5, H4 and H3) and the other Dansgaard-Oeschger stadials (from d’Errico & 
Sanchez Goñi 2003). The curves of the lower and upper standard deviations of annual precipitation and mean temperature of the cold-
est month are shown in Sánchez Goñi et al. (2002).
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uses N-1 of the N variables for a series of modeling runs to 
determine which environmental variable most influences 
the predictive model outcome that utilized the full comple-
ment of analytical variables. 

Additionally, the geographic distributions produced by 
GARP indicate potential Solutrean populations where they 
are known to have occurred as well as where we know they 
did not exist, and a similar pattern is seen with comparative 
GARP models based on the Epigravettien record of South-
ern Europe during the LGM (Figure 2). This suggests that 
cultural adaptations, in addition to environmental condi-
tions, strongly conditioned the distributions of these tech-

nocomplexes. The discord between the GARP models and 
actual archaeological distributions likely reflects the role of 
cultural transmission (Nettle 1998) and cultural territory 
(Collard and Foley 2002) in distributions of archaeological 
populations. 

A similar pattern can be described for North American 
Paleoindian assemblages. Clovis and related fluted points, 
which date from ca 13,500 to 12,900 cal BP (e.g., Fiedel 1999, 
2004, 2005; Haynes 2005; Roosevelt et al. 2002), occur wide-
ly over portions of North America that were unglaciated, 
cross-cutting a wide range of paleoenvironmental settings. 
This pilot analysis is based on 1,514 locations where such 

Figure 2. Upper map (A) depicts GARP prediction based on Solutrean sites dated by AMS to 21±0.5k cal BP. Lower map (B) depicts 
GARP prediction based on Epigravettian sites from Southeastern Europe dated by AMS to 21±0.5k cal BP. The darkest colors repre-
sent the highest level of agreement among best subset models (Anderson et al. 2003) in prediction of potential presence, whereas the 
lightest color represents highest levels of agreement among best subset models in prediction of absence. GARP analyses were based 
on mean temperature and mean precipitation values drawn from a LGM (21k cal BP) General Circulation Model developed by the 
Hadley Centre (Hewitt et al. 2003) and served through PMIP1 (Paleoclimate Modelling Intercomparison Project) (Joussaume and 
Taylor 2000).
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artifacts have been found, along with related information, 
all of which has been compiled and made available on-line 
(Anderson and Faught 1998, 2000; Anderson et al. 2005; 
http://pidba.tennessee.edu/). This Paleoindian Database of 
the Americas (PIDBA) is as comprehensive and inclusive a 
compilation of these artifact types and locations as possible, 
is steadily growing, and has been subject to intensive and 
generally positive evaluation (e.g., Buchanan 2003; Shott 
2002). Given the widespread occurrence of Clovis points, 
appreciable debate and uncertainty exists as to whether: 
(1) a common ‘high technology foraging’ adaptation was in 
play by widely ranging groups (i.e., Kelly and Todd 1988); 
or, (2) a number of distinct adaptations were in existence, 
representing populations adapted to conditions in specific 
subregions, such as generalized foragers in the deciduous 
forests of the southeastern United States or more special-
ized foragers (i.e., caribou hunters) in the northeast and up-
per Midwest (i.e., Anderson 1990; Meltzer 1988, 2002, 2003). 
Given the several hundred years attributed to the Clovis 
phenomenon, both scenarios likely apply. That is, the initial 
Clovis technology and/or populations using it likely radi-
ated rapidly, but soon became distinct from one another in 
time and space, and within a relatively brief period local-
ized adaptations and distinctive subregional cultural tra-
ditions arose (Anderson 1990, 1995; Anderson and Gillam 
2000, 2001; Meltzer 2003). The Clovis niche produced by 
GARP and based on projectile point data (Figure 3) is so 
broad that it may represent a single high technology for-
aging adaptation. More likely, however, the nature of this 
GARP niche prediction indicates that we must refine our 
analytical methods and make use of additional categories 
of assemblage data in order to identify discrete subregional 
adaptations that probably existed during the Clovis era.

In contrast, the presumably immediate post-Clovis and 
contemporaneous Folsom and Cumberland adaptations 
(ca 12,800–12,500 cal BP or later) are much more geographi-
cally restricted, largely to the Great Plains and the decidu-
ous forests of the midsouth, respectively, although they 
exhibit some geographic overlap. The Folsom and Cum-
berland technocomplexes are thought to represent very 
different adaptations, respectively directed to specialized 
bison hunting and more generalized foraging (e.g., Ander-
son 2001; Clark and Collins 2002). Their GARP predictions 
overlap appreciably, however, indicating that the distinctive 
projectile point forms employed by each, which only mini-
mally overlap, are probably strongly culturally determined 
(Figures 4 and 5). That is, the people using each form could 
have ranged far more widely, but did not, probably because 
the landscape was already occupied by peoples belonging 
to different and distinctive cultural traditions. Again, how-
ever, and as with Clovis, we must become better at differen-
tiating these early adaptations, and determine what factors, 
beside projectile point morphology, make them appear to 
represent distinctive cultural complexes.

Based on the GARP results, it can be argued that the 
Solutrean and Epigravettian technocomplexes, as well 
as the New World Paleoindian cultures that immediately 
followed Clovis, may be thought of as sympatric cultures 

adapted to similar abiotic situations but employing differ-
ent cultural adaptations. However, with reference to the 
Solutrean and Epigravettian GARP predictions, one notes 
that the Epigravettian distributions are confined to more 
southerly latitudes, while the potential eco-cultural niche 
distributions for the Solutrean include higher latitudes. 
This indicates that while in a general sense these two tech-
nocomplexes can be viewed as sympatric cultures, they 
nevertheless represent unique technical systems more or 
less adapted to specific environments.

One important issue facing ECNM is how to incorporate 
the occurrences of undated or imprecisely dated material 
culture diagnostics into analyses. The PIDBA encompasses 
some 26,000 late Pleistocene and initial Holocene projectile 
points from over 1,800 locations, spanning a number of ar-
chaeological ‘cultures’ or technocomplexes dating from ca 
13,500 to 10,000 cal BP (Anderson et al. 2005). As noted in 
the discussion above, problems associated with using this 
database include: equating specific artifact types with spe-
cific cultural groups; relying on a group of sites that may 
in reality only partially represent a settlement system; sac-
rificing the need for independent temporal evidence and 
established precision by relying on material diagnostics, 
and assuming that materials are indeed culturally diagnos-
tic [see also Anderson and Faught (1998) for a discussion of 
these concerns, as well as Shott (2002) and Buchanan (2003) 
for in depth critical evaluations of its utility]. Therefore, 
incorporation of such cultural markers into ECNM must 
be done with caution recognizing that models based on 
cultural items from well-dated contexts or datasets that in-
clude a wide array of assemblage data categories will have 
great interpretive potential. For example, seriation and cor-
respondence analyses of personal ornaments from dated 
contexts have been used to identify distinct geographic and 
cultural differences across Europe during the initial Up-
per Paleolithic (Vanhaeren and d’Errico 2006), thus dem-
onstrating the potential of such artifact types for examin-
ing the links between artifact types, culture, and biological 
populations. Future research should examine the impact of 
climate changes on cultural organization and territories, as 
reflected in material culture, and test resulting hypotheses 
against available genetic data.

ECNM also has the potential to model the geography 
and movements of human and earlier hominid popula-
tions; currently, a number of modeling methodologies have 
been used. For example, GIS has been used to approximate 
corridors of migration across continents using least-cost 
paths analysis for Paleoindians in North and South Ameri-
ca (Anderson and Gillam 2000). The “Stepping Out” model 
(Mithen and Reed 2002) and its derivative (Hughes et al. 
2005) combine paleoanthropological data and generic cli-
matic conditions to produce models that are in agreement 
with the East Asian archaeological record, and the latter 
approach has highlighted the importance of uncertainties 
in the environmental tolerances of Homo erectus for their 
later arrival into Europe. Foley et al. (2005) describe similar 
disagreements between the archaeological record of early 
hominid dispersal routes out of Africa and models that use 
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cost matrices based on topographic friction, vegetation, 
and simulated habitat distributions. Colonization proceeds 
at different rates in different environments requiring mod-
els that approximate resource gradients and incorporate 
mathematics, GIS, and archaeological data (e.g., diffusion 
models, wave front models, etc., e.g., Hazelwood and Steele 
2004). Population expansion models must resolve discords 
between the analytical constraints associated with simple 
models and problematic archaeological data (Steele 2005). 

One necessary step is to better integrate paleoenviron-
mental data with archaeological data, but in order for this 
to be productive we need to compile exhaustive and de-
tailed regional archaeological databases that are consistent 
with respect to the information they contain. For example, 
a number of databases exist for the Acheulean Tradition. A 
lower Paleolithic database for the Indian subcontinent has 
been compiled by Shanti Pappu, Sharma Centre for Heritage 
Education, and another assembled by Naama Goren-Inbar 
of Hebrew University of Jerusalem concerns the Acheulean 

record of the Near East. It is hoped that these databases 
can be used to facilitate investigations of Lower Paleolithic 
archaeological diversity, how environmental changes influ-
enced hominid dispersals, and test possible relationships 
between these technologies and environmental factors 
(e.g., James and Petraglia 2005). For example, despite the 
occurrence of Acheulean-like technologies in southern Chi-
na (Yamei et al. 2000), the Movius line appears to remain a 
valid concept. ECNM provides an analytical toolkit with 
which to test the possible relationships between the spread 
of Acheulean and Acheulean-like technologies and ecologi-
cal conditions in Asia.

Similarly, compilation and analyses of robust georefer-
enced databases can increase understanding of the spread 
of Anatomically Modern Humans in Africa and the corre-
lation between archaeological and environmental records. 
The Paleogeography of the African Middle Stone Age 
(PAMSA) database (Marean and Lassiter 2005) has been 
under development for approximately three years. Starting 

Figure 3. GARP prediction for 13,000 cal BP based on occurrences of all fluted point types (n=1,514), excluding known post-Clovis 
types. Climate data were interpreted linearly between a LGM (21k cal BP) and a mid-Holocene (ca 6k cal BP) General Circulation 
Models developed by the Hadley Centre and served through PMIP1.
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with Clark’s Atlas of African Prehistory (1967), this database 
has now been updated to the present. It includes the geo-
graphic coordinates of all MSA sites and links to tables on 
site attributes, excavation details, and the composition of 
the lithic assemblages, as well as hot-links to original data 
tables and figures. It currently includes approximately 
1,800 cases. A spatial analysis of industries characterized by 
bifacial lanceolate points relative to projected environmen-
tal zones suggests these may be adaptive systems focused 
on hunting in grassland ecosystems (Figure 6). 

In the New World, the PIDBA is being developed 
from state and county-level archaeological records of di-
agnostic biface types to enable analyses of archaeological 
distributions and environmental factors related to Pleisto-
cene settlement systems (Anderson et al. 2005; Gillam et al. 
2005). Such continental scale databases are ideally suited 
for ECNM analyses given the rather course spatial resolu-
tion of climate system models (CSM), land and bathymetric 
elevation models (e.g., ETOPO2), and other environmental 
datasets that form the basis of such modeling efforts. As 

noted above, the PIDBA’s contribution to such modeling ef-
forts will continue to grow as it is expanded to include a 
more comprehensive array of assemblage and chronologi-
cal data.

Other databases that focus on the definition of prehis-
toric cultures and technocomplexes based on material re-
mains are being constructed for ECNM analyses (Svoboda 
in press). Jaubert’s (2005) Middle Paleolithic database is a 
prime candidate for such investigations once the compila-
tion of geographic coordinates of all its sites is completed.  
Similar Middle Paleolithic databases for the Caucasus re-
gion are also being compiled (Doronichev 2005; Golova-
nova 2005), and these too have great analytical potential. 
A large comprehensive database that includes information 
on lithogical, geological, geomorphological, vegetational, 
paleobotanical, and archaeological data associated with the 
LGM in Italy has the potential to identify trends such as 
the spread of the early Epigravettian in Italy and associated 
environmental influences (Peresani et al. 2005). Research 
presented at the two workshops revealed that such compi-

Figure 4. GARP prediction for 12,000 cal BP based on Folsom point occurrences (n=292). Climate data were interpreted linearly 
between a LGM (21k cal BP) and a mid-Holocene (ca 6k cal BP) General Circulation Models developed by the Hadley Centre and 
served through PMIP1.
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lations of environmental and archaeological data from dis-
parate disciplinary domains, geographic regions, and time 
periods require working with professionals in informatics 
and close collaboration among researchers in archaeology.

In brief, ECNM offers considerable potential to archae-
ology and the study of ancient humans. The technique al-
lows investigators to interpret geographic patterns ecologi-
cally, which makes for numerous unique inferences. First, 
and most simply, the models themselves can be interpreted 
to provide insights into the ecological distributions of an-
cient humans, teasing apart influences (for example) of 
temperature and precipitation. Second, the maps produced 
can be interpreted as depicting potential geographic distri-
butions—within known distributional areas, this result can 
interpolate between known occurrences to hypothesize a 
more complete geographic distribution (Soberón and Peter-
son 2005); when predictions are geographically disjunctive, 
they may indicate new sites for exploration (Raxworthy et 
al. 2003). ECNM can also be applied to questions of distri-
butions of prey species or other biological resources—for 
example, testing hypotheses of reindeer distributions dur-

ing the LGM (Flagstad and Røed 2003), or the distribution 
of particular forest types, would be most useful (for related 
ENM examples, see Bonaccorso et al. 2006; Martínez-Meyer 
and Peterson in press; Martínez-Meyer et al. 2004). Finally, 
ECNM has the potential to develop quantitative predictions 
of the effects of events of change on ancient humans—cli-
mate change, land use change, etc., all interact with species’ 
ecological potential, and the spatial manifestations of these 
changes can be reconstructed using such a methodologi-
cal approach (Sánchez-Cordero et al. 2005, Thomas et al. 
2004). As such, ECNM has much to offer to archaeology, 
providing the potential for many new insights and new 
questions.

Accurate interpretation of recognized cultural patterns 
requires incorporation of ecological concepts into ECNM 
analyses (d’Errico et al. 2006; Vanhaeren and d’Errico 
2006). Some features of linguistic systems may relate to 
environmental conditions, such as ecological risk (Collard 
and Foley 2002; Nettle 1998). Although there is likely no 
direct relationship between them, an indirect one may be 
mediated by the social structures of the speakers and their 

Figure 5. GARP prediction for 12,000 cal BP based on Cumberland point occurrences (n=103). Climate data were interpreted linearly 
between a LGM (21k cal BP) and a mid-Holocene (ca 6k cal BP) General Circulation Models developed by the Hadley Centre and 
served through PMIP1.
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behaviors in adapting to specific environments. Although 
it is difficult to apply these concepts to Paleolithic popula-
tions, small group size, localized residence, exogamy, and 
the size and frequency of aggregations all might explain 
expected levels of linguistic variability in hunter-gatherer 
groups (Coupé 2005). Modeling linguistic diversity might 
yield valuable results, and there should be a focus on the 
concept of ecological risk among hunter-gatherers, with re-
spect to cultural and climatic variability, and subsequent 
impacts on the patterns of social interactions and linguistic 
evolution. Coupé is currently examining the influence of 
social structure on language evolution, and more specifi-
cally how the evolution of language diversity is related to 
the degree of locality among interacting populations. Such 
an approach could be used to model the possible size of 
cultural groups during specific periods of the Paleolithic.

However, the results of a current OMLL project in South 
America indicate caution in assuming a strict link between 

linguistic, ethnic, and genetic data and ecological factors 
(Hornborg 2005). For example, although geographically 
isolated groups speak related languages, their neighbors 
may be linguistically and ethnically different despite shar-
ing similar adaptations and material culture. This pattern is 
related to the recursive relationship between socio-ecologi-
cal niches and the construction of ethnic identity (Hornborg 
2005), which leaves signatures that could be explored with 
Eco-Cultural Niche Modeling.

CoNCluSIoNS
A current challenge facing archaeology (and other disci-
plines) is deciphering and understanding coupled natu-
ral and human systems and their reciprocal impacts, as 
well as the constants in their dynamic equilibrium. Such 
understanding requires enabling access to data across bio-
diversity, ecology, earth systems science, and anthropol-
ogy; mining, analyzing, and modeling these data for new 

Figure 6. The location of Aterian sites projected on an interglacial vegetation map derived from the early Holocene reconstruction of 
Adams and Faure (1997), and the location of Lupemban sites on a glacial vegetation map derived from the Last Glacial Maximum 
reconstruction of Adams and Faure (1997).
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knowledge; and informing decision-makers and the pub-
lic of the insights discovered. Research that exploits infor-
mation technology to bridge natural and human systems 
will advance our ability to study aspects of biocomplexity 
across these systems. 

The two ECNM workshops “proved” a concept and 
initiated a fusion of multiple disciplines and data domains 
in eco-cultural niche modeling of past coupled and natural 
systems, particularly human-environment interactions. The 
workshops also identified current limitations of applying 
ECNM to analyses of the archaeological record, especially 
as regards the quality, quantity, and temporal and spatial 
resolution of the data.  Archaeology lacks network-ready 
databases that are uniformly detailed, comprehensive, and 
consistent across the spatial and temporal record.  Com-
piling such resources requires international collaboration 
in mining literature, collections, and other sources, and 
capturing and networking the data via modern informat-
ics tools. Biases inherent in these databases are differences 
in the quality and resolution of regional archaeological 
surveys, and frequencies and distributions of known sites 
and dated sites. Precisely because the archaeological re-
cord represents the human past imperfectly preserved and 
discovered, ECNM is a powerful tool in reconstructing the 
geographic patterns of archaeological populations, as it 
has proven to be for biological species (Wiens and Graham 
2005), of which perhaps only 10% are documented in mu-
seum collections, biotic surveys, and the literature.

 Specific challenges facing the enhancement of ECMN 
analyses encompass the chronological record, the climate 
record, and computational expertise. Chronological resolu-
tion is critical to understanding cultural responses to specif-
ic climatic events, but because many dates are problematic 
(e.g., sigmas that are too large), analyses require consistent, 
compelling criteria in excluding or including particular 
conventional and AMS radiocarbon dates. 

Another issue is the availability and use of interpolated 
climatic data at a regional level that have the requisite spa-
tial resolution for GARP modeling. Every general circula-
tion model differs in its climatic predictions slightly from 
higher resolution regional proxy records. For example, 
many recent high-resolution atmospheric general circu-
lation models underestimate LGM cooling and aridity as 
compared to pollen records (Jost et al. 2005). Mathematical 
interpolation of coarser-scale climatic data can yield finer 
spatial resolution, but different assumptions and math-
ematical methodologies will produce different results. The 
consequence will be a need for ensemble predictions and 
careful rethinking regarding both the implications and lim-
itations of ECNM analyses. 

Finally, ECNM requires considerable training and skill 
in (1) the use of various, complex software packages and 
computational routines; (2) organizing and integrating 
disparate datasets for modeling; and, (3) interpretation of 
model outcomes. The solution, of which the two work-
shops were an illustration, is to establish multidisciplinary 
and multisector research teams representing the biological, 
environmental, anthropological, and information scienc-

es. Such teams can deploy ECNM to heterogeneous data 
and complex, large-scale research problems in prehistoric 
coupled natural and human systems that were previously 
intractable. 
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